Skip to main content

Application of Nanosilicon and Nanochitosan to Diminish the Use of Pesticides and Synthetic Fertilizers in Crop Production

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

Modern agriculture and human nutrition depend on the use of agrochemicals. Among these are pesticides and synthetic fertilizers that cause a significant impact on ecosystems. It is desirable, therefore, to have alternatives that without reducing the production of food and its quality, reduce the amount and variety of pesticides and synthetic fertilizers used. Nanosilicon and nanochitosan are attractive materials due to their low environmental impact and their ability to induce positive responses in soils and plants. Compared with bulk materials, the use of nanometric materials significantly increases their effectiveness. The application of nanosilicon and nanochitosan to the soil, either individually or in combination, increases the bioavailability of mineral nutrients, reducing the need to apply copious amounts of fertilizers. On the other hand, the adverse effects of salinity, water deficit, heavy metals, and root pathogens are mitigated, reducing the need for pesticide use and increasing tolerance to environmental stress in plants. When applied by foliar spraying the impacts of nanosilicon and nanochitosan are equally positive, functioning as biostimulant compounds that induce and strengthen the defense mechanisms of plants against biotic and abiotic stresses, in addition to increasing their nutritional quality. The result obtained is a combination of stronger crops and an edaphic system that supports more productive plants. This chapter presents updated information about the agricultural application of nanosilicon and nanochitosan with the objective of reducing the use of pesticides and synthetic fertilizers, mitigating the environmental impact of the agricultural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ojeda-Barrios DL, Morales I, Juárez-Maldonado A, Sandoval-Rangel A, Fuentes-Lara LO, Benavides-Mendoza A (2020) Importance of nanofertilizers in fruit nutrition. In: Srivastava AK, Hu C (eds) Fruit crops. Elsevier, Amsterdam, pp 497–508

    Google Scholar 

  2. Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Adv Nat Sci Nanosci Nanotechnol 8:013001. https://doi.org/10.1088/2043-6254/8/1/013001

    Article  CAS  Google Scholar 

  3. Juárez-Maldonado A, Ortega-Ortíz H, Morales-Díaz AB, González-Morales S, Morelos-Moreno Á, Cabrera-De la Fuente M, Sandoval-Rangel A, Cadenas-Pliego G, Benavides-Mendoza A (2019) Nanoparticles and nanomaterials as plant biostimulants. Int J Mol Sci 20:162. https://doi.org/10.3390/ijms20010162

    Article  CAS  Google Scholar 

  4. López-Pérez MC, Pérez-Labrada F, Ramírez-Pérez LJ, Juárez-Maldonado A, Morales-Díaz AB, González-Morales S, García-Dávila LR, García-Mata J, Benavides-Mendoza A (2018) Dynamic modeling of silicon bioavailability, uptake, transport, and accumulation: applicability in improving the nutritional quality of tomato. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00647

  5. Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic 196:49–65. https://doi.org/10.1016/j.scienta.2015.09.031

    Article  CAS  Google Scholar 

  6. Abdelhameed M, Aly S, Lant JT, Zhang X, Charpentier P (2018) Energy/electron transfer switch for controlling optical properties of silicon quantum dots. Sci Rep 8:1–13. https://doi.org/10.1038/s41598-018-35201-0

    Article  CAS  Google Scholar 

  7. He Y, Fan C, Lee S-T (2010) Silicon nanostructures for bioapplications. Nano Today 5:282–295. https://doi.org/10.1016/j.nantod.2010.06.008

    Article  CAS  Google Scholar 

  8. Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Front Chem 6. https://doi.org/10.3389/fchem.2018.00038

  9. Wu R, Zhou K, Yue CY, Wei J, Pan Y (2015) Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog Mater Sci 72:1–60. https://doi.org/10.1016/j.pmatsci.2015.01.003

    Article  CAS  Google Scholar 

  10. Narayan R, Nayak UY, Raichur AM, Garg S (2018) Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10. https://doi.org/10.3390/pharmaceutics10030118

  11. Hossain SS, Mathur L, Roy PK (2018) Rice husk/rice husk ash as an alternative source of silica in ceramics: a review. J Asian Ceramic Soc 6:299–313. https://doi.org/10.1080/21870764.2018.1539210

    Article  Google Scholar 

  12. Ng E-P, Awala H, Tan K-H, Adam F, Retoux R, Mintova S (2015) EMT-type zeolite nanocrystals synthesized from rice husk. Microporous Mesoporous Mater 204:204–209. https://doi.org/10.1016/j.micromeso.2014.11.017

    Article  CAS  Google Scholar 

  13. RSC (2020) Silicon – element information, properties and uses | Periodic table. https://www.rsc.org/periodic-table/element/14/silicon. Accessed 1 Mar 2020

  14. Verma KK, Liu X-H, Wu K-C, Singh RK, Song Q-Q, Malviya MK, Song X-P, Singh P, Verma CL, Li Y-R (2019) The impact of silicon on photosynthetic and biochemical responses of sugarcane under different soil moisture levels. SILICON. https://doi.org/10.1007/s12633-019-00228-z

  15. Harraz FA (2014) Porous silicon chemical sensors and biosensors: a review. Sensors Actuators B Chem 202:897–912. https://doi.org/10.1016/j.snb.2014.06.048

    Article  CAS  Google Scholar 

  16. Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9:90. https://doi.org/10.1007/s13205-019-1626-7

    Article  Google Scholar 

  17. Neagu M, Piperigkou Z, Karamanou K, Engin AB, Docea AO, Constantin C, Negrei C, Nikitovic D, Tsatsakis A (2017) Protein bio-corona: critical issue in immune nanotoxicology. Arch Toxicol 91:1031–1048. https://doi.org/10.1007/s00204-016-1797-5

    Article  CAS  Google Scholar 

  18. Nsibande SA, Forbes PBC (2016) Fluorescence detection of pesticides using quantum dot materials – a review. Anal Chim Acta 945:9–22. https://doi.org/10.1016/j.aca.2016.10.002

    Article  CAS  Google Scholar 

  19. Xu X, Mao X, Zhuang J, Lei B, Li Y, Li W, Zhang X, Hu C, Fang Y, Liu Y (2020) PVA coated fluorescent carbon dots nanocapsule as optical amplifier for enhanced photosynthesis of lettuce. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.9b07706

  20. Zheng Y, Zhang H, Li W, Liu Y, Zhang X, Liu H, Lei B (2017) Pollen derived blue fluorescent carbon dots for bioimaging and monitoring of nitrogen, phosphorus and potassium uptake in Brassica parachinensis L. RSC Adv 7:33459–33465. https://doi.org/10.1039/C7RA04644H

    Article  CAS  Google Scholar 

  21. Vázquez-Núñez E, López-Moreno ML, de la Rosa Álvarez G, Fernández-Luqueño F (2018) Incorporation of nanoparticles into plant nutrients: the real benefits. In: López-Valdez F, Fernández-Luqueño F (eds) Agricultural nanobiotechnology: modern agriculture for a sustainable future. Springer International Publishing, Cham, pp 49–76

    Chapter  Google Scholar 

  22. Sangeetha C, Baskar P (2016) Zeolite and its potential uses in agriculture: a critical review. Agric Rev. https://doi.org/10.18805/ar.v0iof.9627

  23. Eroglu N, Emekci M, Athanassiou CG (2017) Applications of natural zeolites on agriculture and food production. J Sci Food Agric 97:3487–3499. https://doi.org/10.1002/jsfa.8312

    Article  CAS  Google Scholar 

  24. Mirzaei Aminiyan M, Safari Sinegani AA, Sheklabadi M (2015) Aggregation stability and organic carbon fraction in a soil amended with some plant residues, nanozeolite, and natural zeolite. Int J Recycl Org Waste Agric 4:11–22. https://doi.org/10.1007/s40093-014-0080-0

    Article  Google Scholar 

  25. Thirunavukkarasu M, Subramanian KS (2014) Surface modified nano-zeolite based sulphur fertilizer on growth and biochemical parameters of groundnut. Trends Biosci 7:565–568

    Google Scholar 

  26. Mikhak A, Sohrabi A, Kassaee MZ, Feizian M (2017) Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricariachamomilla L.). Ind Crop Prod 95:444–452. https://doi.org/10.1016/j.indcrop.2016.10.054

    Article  CAS  Google Scholar 

  27. Yuvaraj M, Subramanian KS (2018) Development of slow release Zn fertilizer using nano-zeolite as carrier. J Plant Nutr 41:311–320. https://doi.org/10.1080/01904167.2017.1381729

    Article  CAS  Google Scholar 

  28. Khati P, Chaudhary P, Gangola S, Sharma A (2019) Influence of nanozeolite on plant growth promotory bacterial isolates recovered from nanocompound infested agriculture field. Environ Ecol 37:521–527

    Google Scholar 

  29. Ogunlaja SB, Pal R (2020) Effects of bentonite Nanoclay and Cetyltrimethyl ammonium bromide modified bentonite Nanoclay on phase inversion of water-in-oil emulsions. Colloids Interfaces 4:2. https://doi.org/10.3390/colloids4010002

    Article  CAS  Google Scholar 

  30. Mandal N, Datta SC, Manjaiah KM, Dwivedi BS, Kumar R, Aggarwal P (2018) Zincated Nanoclay polymer composites (ZNCPCs): synthesis, characterization, biodegradation and controlled release behaviour in soil. Polym-Plast Technol Eng 57:1760–1770. https://doi.org/10.1080/03602559.2017.1422268

    Article  CAS  Google Scholar 

  31. Saurabh K, Math MK, Datta SC, Thekkumpurath AS, Kumar R (2019) Nanoclay polymer composites loaded with urea and nitrification inhibitors for controlling nitrification in soil. Arch Agron Soil Sci 65:478–491. https://doi.org/10.1080/03650340.2018.1507023

    Article  CAS  Google Scholar 

  32. Mandal N, Datta SC, Manjaiah KM, Dwivedi BS, Kumar R, Aggarwal P (2019) Evaluation of zincated nanoclay polymer composite in releasing Zn and P and effect on soil enzyme activities in a wheat rhizosphere. Eur J Soil Sci 70:1164–1182. https://doi.org/10.1111/ejss.12860

    Article  CAS  Google Scholar 

  33. Mukhopadhyay R, Manjaiah KM, Datta SC, Sarkar B (2019) Comparison of properties and aquatic arsenic removal potentials of organically modified smectite adsorbents. J Hazard Mater 377:124–131. https://doi.org/10.1016/j.jhazmat.2019.05.053

    Article  CAS  Google Scholar 

  34. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2014) Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Synth React Inorg, Met-Org, Nano-Met Chem 44:1128–1131. https://doi.org/10.1080/15533174.2013.799197

    Article  CAS  Google Scholar 

  35. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays. L) Seeds under hydroponic conditions. Curr Nanosci 8:902–908. https://doi.org/10.2174/157341312803989033

    Article  CAS  Google Scholar 

  36. Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12:2221–2228. https://doi.org/10.1166/jnn.2012.5801

    Article  CAS  Google Scholar 

  37. Boroumand N, Behbahani M, Dini G (2020) Combined effects of phosphate solubilizing Bacteria and Nanosilica on the growth of land cress plant. J Soil Sci Plant Nutr 20:232–243. https://doi.org/10.1007/s42729-019-00126-8

    Article  CAS  Google Scholar 

  38. Rangaraj S, Gopalu K, Rathinam Y, Periasamy P, Venkatachalam R, Narayanasamy K (2014) Effect of silica nanoparticles on microbial biomass and silica availability in maize rhizosphere. Biotechnol Appl Biochem 61:668–675. https://doi.org/10.1002/bab.1191

    Article  CAS  Google Scholar 

  39. Mushtaq A, Jamil N, Rizwan S, Mandokhel F, Riaz M, Hornyak GL, Najam Malghani M, Naeem Shahwani M (2018) Engineered silica nanoparticles and silica nanoparticles containing controlled release fertilizer for drought and saline areas. IOP Conf Ser Mater Sci Eng 414:012029. https://doi.org/10.1088/1757-899X/414/1/012029

    Article  Google Scholar 

  40. Olad A, Zebhi H, Salari D, Mirmohseni A, Reyhani Tabar A (2018) Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater Sci Eng C 90:333–340. https://doi.org/10.1016/j.msec.2018.04.083

    Article  CAS  Google Scholar 

  41. Ohta S, Yamura K, Inasawa S, Yamaguchi Y (2015) Aggregates of silicon quantum dots as a drug carrier: selective intracellular drug release based on pH-responsive aggregation/dispersion. Chem Commun 51:6422–6425. https://doi.org/10.1039/C5CC00925A

    Article  CAS  Google Scholar 

  42. Ibrahim SS, Salem NY (2019) Insecticidal efficacy of nano zeolite against Tribolium confusum (Col., Tenebrionidae) and Callosobruchus maculatus (Col., Bruchidae). Bull Natl Res Cent 43:92. https://doi.org/10.1186/s42269-019-0128-4

    Article  Google Scholar 

  43. Wang Y, Cui H, Sun C, Zhao X, Cui B (2014) Construction and evaluation of controlled-release delivery system of Abamectin using porous silica nanoparticles as carriers. Nanoscale Res Lett 9:655. https://doi.org/10.1186/1556-276X-9-655

    Article  CAS  Google Scholar 

  44. Song M-R, Cui S-M, Gao F, Liu Y-R, Fan C-L, Lei T-Q, Liu D-C (2012) Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. J Pestic Sci 37:258–260. https://doi.org/10.1584/jpestics.D12-027

    Article  CAS  Google Scholar 

  45. Cao L, Zhang H, Cao C, Zhang J, Li F, Huang Q (2016) Quaternized chitosan-capped mesoporous silica nanoparticles as Nanocarriers for controlled pesticide release. Nanomaterials 6:126. https://doi.org/10.3390/nano6070126

    Article  CAS  Google Scholar 

  46. Cumplido-Nájera CF, González-Morales S, Ortega-Ortíz H, Cadenas-Pliego G, Benavides-Mendoza A, Juárez-Maldonado A (2019) The application of copper nanoparticles and potassium silicate stimulate the tolerance to Clavibacter michiganensis in tomato plants. Sci Hortic 245:82–89. https://doi.org/10.1016/j.scienta.2018.10.007

    Article  CAS  Google Scholar 

  47. Khan MR, Siddiqui ZA (2020) Use of silicon dioxide nanoparticles for the management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.). Sci Hortic 265:109211. https://doi.org/10.1016/j.scienta.2020.109211

    Article  CAS  Google Scholar 

  48. Li Y, Li W, Zhang H, Dong R, Li D, Liu Y, Huang L, Lei B (2019) Biomimetic preparation of silicon quantum dots and their phytophysiology effect on cucumber seedlings. J Mater Chem B 7:1107–1115. https://doi.org/10.1039/C8TB02981D

    Article  CAS  Google Scholar 

  49. Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM (2016) Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152:81–91. https://doi.org/10.1016/j.chemosphere.2016.02.096

    Article  CAS  Google Scholar 

  50. Ghorbanpour M, Mohammadi H, Kariman K (2020) Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environ Sci Nano 7:443–461. https://doi.org/10.1039/C9EN00973F

    Article  CAS  Google Scholar 

  51. Alsaeedi A, El-Ramady H, Alshaal T, El-Garawany M, Elhawat N, Al-Otaibi A (2019) Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiol Biochem 139:1–10. https://doi.org/10.1016/j.plaphy.2019.03.008

    Article  CAS  Google Scholar 

  52. Ali S, Rizwan M, Hussain A, Zia ur Rehman M, Ali B, Yousaf B, Wijaya L, Alyemeni MN, Ahmad P (2019) Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiol Biochem 140:1–8. https://doi.org/10.1016/j.plaphy.2019.04.041

    Article  CAS  Google Scholar 

  53. Cui J, Liu T, Li F, Yi J, Liu C, Yu H (2017) Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369. https://doi.org/10.1016/j.envpol.2017.05.014

    Article  CAS  Google Scholar 

  54. Zhao F, Wu J, Ying Y, She Y, Wang J, Ping J (2018) Carbon nanomaterial-enabled pesticide biosensors: design strategy, biosensing mechanism, and practical application. TrAC Trends Anal Chem 106:62–83. https://doi.org/10.1016/j.trac.2018.06.017

    Article  CAS  Google Scholar 

  55. Pla L, Lozano-Torres B, Martínez-Máñez R, Sancenón F, Ros-Lis JV (2019) Overview of the evolution of silica-based chromo-Fluorogenic nanosensors. Sensors 19:5138. https://doi.org/10.3390/s19235138

    Article  Google Scholar 

  56. Yi Y, Zhu G, Liu C, Huang Y, Zhang Y, Li H, Zhao J, Yao S (2013) A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Anal Chem 85:11464–11470. https://doi.org/10.1021/ac403257p

    Article  CAS  Google Scholar 

  57. Zhu L, Peng X, Li H, Zhang Y, Yao S (2017) On–off–on fluorescent silicon nanoparticles for recognition of chromium(VI) and hydrogen sulfide based on the inner filter effect. Sensors Actuators B Chem 238:196–203. https://doi.org/10.1016/j.snb.2016.07.029

    Article  CAS  Google Scholar 

  58. Ding L, Zhang W, Zhang Y, Lin Z, Wang X (2019) Luminescent silica nanosensors for lifetime based imaging of intracellular oxygen with millisecond time resolution. Anal Chem 91:15625–15633. https://doi.org/10.1021/acs.analchem.9b03726

    Article  CAS  Google Scholar 

  59. Furlani F, Sacco P, Decleva E, Menegazzi R, Donati I, Paoletti S, Marsich E (2019) Chitosan acetylation degree influences the physical properties of polysaccharide nanoparticles: implication for the innate immune cells response. ACS Appl Mater Interfaces 11:9794–9803. https://doi.org/10.1021/acsami.8b21791

    Article  CAS  Google Scholar 

  60. Wahid F, Khan T, Hussain Z, Ullah H (2018) 30 – nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In: Inamuddin, Asiri AM, Mohammad A (eds) Applications of nanocomposite materials in drug delivery. Woodhead Publishing, Sawston, pp 701–735

    Chapter  Google Scholar 

  61. Darwesh OM, Sultan YY, Seif MM, Marrez DA (2018) Bio-evaluation of crustacean and fungal nano-chitosan for applying as food ingredient. Toxicol Rep 5:348–356. https://doi.org/10.1016/j.toxrep.2018.03.002

    Article  CAS  Google Scholar 

  62. Arrouze F, Essahli M, Rhazi M, Desbrieres J, Tolaimate A (2017) Chitin and chitosan: study of the possibilities of their production by valorization of the waste of crustaceans and cephalopods rejected in Essaouira. J Mater Environ Sci 8:2251–2258

    CAS  Google Scholar 

  63. Jardine A, Sayed S (2016) Challenges in the valorisation of chitinous biomass within the biorefinery concept. Curr Opin Green Sustain Chem 2:34–39. https://doi.org/10.1016/j.cogsc.2016.09.007

    Article  Google Scholar 

  64. Bastiaens L, Soetemans L, D’Hondt E, Elst K (2019) Sources of chitin and chitosan and their isolation. In: Chitin and chitosan. Wiley, Hoboken, pp 1–34

    Google Scholar 

  65. Nugraheni PS, Soeriyadi AH, Sediawan WB, Ustadi BW (2019) Influence of salt addition and freezing-thawing on particle size and zeta potential of nano-chitosan. IOP Conf Ser Earth Environ Sci 278:012052. https://doi.org/10.1088/1755-1315/278/1/012052

    Article  Google Scholar 

  66. Embaby AM, Melika RR, Hussein A, El-Kamel AH, Marey HS (2018) Biosynthesis of chitosan-oligosaccharides (COS) by non-aflatoxigenic Aspergillus sp. strain EGY1 DSM 101520: a robust biotechnological approach. Process Biochem 64:16–30. https://doi.org/10.1016/j.procbio.2017.09.030

    Article  CAS  Google Scholar 

  67. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112. https://doi.org/10.1007/s10311-017-0670-y

    Article  CAS  Google Scholar 

  68. Thomas MS, Pillai PKS, Faria M, Cordeiro N, Kailas L, Kalarikkal N, Thomas S, Pothen LA (2020) Polylactic acid/nano chitosan composite fibers and their morphological, physical characterization for the removal of cadmium(II) from water. J Appl Polym Sci 137:48993. https://doi.org/10.1002/app.48993

    Article  CAS  Google Scholar 

  69. Veroneze-Júnior V, Martins M, Mc Leod L, Souza KRD, Santos-Filho PR, Magalhães PC, Carvalho DT, Santos MH, Souza TC, Veroneze-Júnior V, Martins M, Mc Leod L, Souza KRD, Santos-Filho PR, Magalhães PC, Carvalho DT, Santos MH, Souza TC (2020) Leaf application of chitosan and physiological evaluation of maize hybrids contrasting for drought tolerance under water restriction. Braz J Biol:1–10. https://doi.org/10.1590/1519-6984.218391

  70. Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Fundamentals and applications of chitosan. In: Crini G, Lichtfouse E (eds) Sustainable agriculture reviews 35: chitin and chitosan: history, fundamentals and innovations. Springer International Publishing, Cham, pp 49–123

    Chapter  Google Scholar 

  71. Swaroopa Rani T, Nadendla SR, Bardhan K, Madhuprakash J, Podile AR (2020) Chapter 17: Chitosan conjugates, microspheres, and nanoparticles with potential agrochemical activity. In: Prasad MNV (ed) Agrochemicals detection, treatment and remediation. Butterworth-Heinemann, Oxford, pp 437–464

    Google Scholar 

  72. Choudhary RC, Kumari S, Kumaraswamy RV, Sharma G, Kumar A, Budhwar S, Pal A, Raliya R, Biswas P, Saharan V (2019) Chitosan nanomaterials for smart delivery of bioactive compounds in agriculture. In: Raliya R (ed) Nanoscale engineering in agricultural management. CRC Press, Boca Raton, pp 1–16

    Google Scholar 

  73. Alyasi H, Mackey HR, McKay G (2019) Removal of cadmium from waters by adsorption using nanochitosan. Energy Environ:0958305X19876191. https://doi.org/10.1177/0958305X19876191

  74. Sharaf OM, Al-Gamal MS, Ibrahim GA, Dabiza NM, Salem SS, El-ssayad MF, Youssef AM (2019) Evaluation and characterization of some protective culture metabolites in free and nano-chitosan-loaded forms against common contaminants of Egyptian cheese. Carbohydr Polym 223:115094. https://doi.org/10.1016/j.carbpol.2019.115094

    Article  CAS  Google Scholar 

  75. Khati P, Chaudhary P, Gangola S, Bhatt P, Sharma A (2017) Nanochitosan supports growth of Zea mays and also maintains soil health following growth. 3 Biotech 7:81. https://doi.org/10.1007/s13205-017-0668-y

    Article  Google Scholar 

  76. Zahedi SM, Karimi M, da Silva JAT (2020) The use of nanotechnology to increase quality and yield of fruit crops. J Sci Food Agric 100:25–31. https://doi.org/10.1002/jsfa.10004

    Article  CAS  Google Scholar 

  77. Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2019) Impact of engineered nanomaterials either alone or loaded with NPK on growth and productivity of French bean plants: seed priming vs foliar application. S Afr J Bot 125:102–108. https://doi.org/10.1016/j.sajb.2019.07.005

    Article  CAS  Google Scholar 

  78. Sen SK, Chouhan D, Das D, Ghosh R, Mandal P (2020) Improvisation of salinity stress response in mung bean through solid matrix priming with normal and nano-sized chitosan. Int J Biol Macromol 145:108–123. https://doi.org/10.1016/j.ijbiomac.2019.12.170

    Article  CAS  Google Scholar 

  79. Kuyyogsuy A, Deenamo N, Khompatara K, Ekchaweng K, Churngchow N (2018) Chitosan enhances resistance in rubber tree (Hevea brasiliensis), through the induction of abscisic acid (ABA). Physiol Mol Plant Pathol 102:67–78. https://doi.org/10.1016/j.pmpp.2017.12.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Robledo-Olivo, A., Cabrera-De la Fuente, M., Benavides-Mendoza, A. (2021). Application of Nanosilicon and Nanochitosan to Diminish the Use of Pesticides and Synthetic Fertilizers in Crop Production. In: Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics