Skip to main content

Cellulose-Based Nanomaterials for Water Pollutant Remediation: Review

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

In the present scenario, green nanomaterials and nanocomposites have been developed and utilized for environmental applications. They can minimize adverse environmental impacts with enhanced eco-friendliness, sustainability, and applicability, and are the eco-friendly solutions in regards the need of current era. Green polymer nanocomposites, generated from the renewable sources (i.e., animals, plants, and microbes) have received a great attention for various environmental applications to maintain sustainable world. There are many varieties of CBNs have been synthesized and nanotechnology in particular has wide applications including wastewater treatment due to their high surface-to-volume, functionalization, and ecofriendly nature. This review highlights the aspects of cellulose-based nanomaterials (CBNs) for pollutant remediation from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang D (2019) A critical review of cellulose-based nanomaterials for water purification in industrial processes. Cellulose 26(2):687–701

    CAS  Google Scholar 

  2. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294

    CAS  Google Scholar 

  3. Kolahalam LA, Viswanath IK, Diwakar BS et al (2019) Review on nanomaterials: synthesis and applications. Mater Today Proc 18:2182–2190

    Google Scholar 

  4. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    CAS  Google Scholar 

  5. Paunonen S (2013) Strength and barrier enhancements of composites and packaging boards by nanocelluloses – a literature review. Nord Pulp Pap Res J 28:165–181

    CAS  Google Scholar 

  6. Shatkin JA, Wegner TH, Bilek EM, Cowie J (2014) Market projections of cellulose nanomaterial-enable products – part 1.Applications. TAPPI J 13:9–16

    CAS  Google Scholar 

  7. Abeer MM, Amin M, Martin C (2014) A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects. J Pharm Pharmacol 66:1047–1061

    CAS  Google Scholar 

  8. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346

    CAS  Google Scholar 

  9. Shelke NB, James R, Laurencin CT, Kumbar SG (2014) Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol 25:448–460

    CAS  Google Scholar 

  10. Miao CW, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20:2221–2262

    CAS  Google Scholar 

  11. Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Technol 49(9):5277–5287

    CAS  Google Scholar 

  12. Moon RJ, Schueneman GT, Simonsen J (2016) Overview of cellulose nanomaterials, their capabilities and applications. JOM 68(9):2383–2394

    CAS  Google Scholar 

  13. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    CAS  Google Scholar 

  14. Tan XY, Hamid SBA, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591

    CAS  Google Scholar 

  15. Lu Z, Fan L, Zheng H, Lu Q, Liao Y, Huang B (2013) Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted. Bioresour Technol 146:82–88

    CAS  Google Scholar 

  16. Morais JPS, de Freitas RM, Nascimento LD, do Nascimento et al (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235

    CAS  Google Scholar 

  17. Lu P, Hsieh YL (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87(1):564–573

    CAS  Google Scholar 

  18. Cui S, Zhang S, Ge S, Xiong L, Sun Q (2016) Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind Crop Prod 83:346–352

    CAS  Google Scholar 

  19. Shimizu M, Saito T, Isogai A (2014) Bulky quaternary alkylammonium counterions enhance the nanodispersibility of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose in diverse solvents. Biomacromolecules 15(5):1904–1909

    CAS  Google Scholar 

  20. Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    CAS  Google Scholar 

  21. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    CAS  Google Scholar 

  22. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    CAS  Google Scholar 

  23. Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165

    CAS  Google Scholar 

  24. Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307

    CAS  Google Scholar 

  25. Yang Q, Lue A, Zhang L (2010) Reinforcement of ramie fibers on regenerated cellulose films. Compos Sci Technol 70(16):2319–2324

    CAS  Google Scholar 

  26. Liu H, Geng S, Hu P, Qin Q, Wei C, Lu J (2015) Study of Pickering emulsion stabilized by sulfonated cellulose nanowhiskers extracted from sisal fiber. Colloid Polym Sci 293(3):963–974

    CAS  Google Scholar 

  27. Haafiz MM, Hassan A, Khalil HA, Fazita MN, Islam MS et al (2016) Exploring the effect of cellulose nanowhiskers isolated from oil palm biomass on polylactic acid properties. Int J Biol Macromol 85:370–378

    CAS  Google Scholar 

  28. Araujo RA, Rubira AF, Follmann HD, Silva R (2020) Fast and facile size selection processing for high quality cellulose nanowhiskers. Cellulose 27(1):205–214

    CAS  Google Scholar 

  29. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    CAS  Google Scholar 

  30. Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8(2):287–298

    CAS  Google Scholar 

  31. Dash R, Foston M, Ragauskas AJ (2013) Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers. Carbohydr Polym 91(2):638–645

    CAS  Google Scholar 

  32. Oliveira Barud HG, Barud Hda S, Cavicchioli M, do Amaral TS et al (2015) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51

    CAS  Google Scholar 

  33. Wang L, Schütz C, Salazar-Alvarez G, Titirici MM (2014) Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Adv 4(34):17549–17554

    CAS  Google Scholar 

  34. Jozala AF, de Lencastre-Novaes LC, Lopes AM, de Carvalho Santos-Ebinuma V et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100(5):2063–2072

    CAS  Google Scholar 

  35. Mohammadkazemi F, Azin M, Ashori A (2015) Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym 117:518–523

    CAS  Google Scholar 

  36. Gardner DJ, Oporto GS, Mills R, Samir MASA (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22(5–6):545–567

    CAS  Google Scholar 

  37. Hua K, Carlsson DO, Ålander E, Lindström T, Strømme M, Mihranyan A, Ferraz N (2014) Translational study between structure and biological response of nanocellulose from wood and green algae. RSC Adv 4(6):2892–2903

    CAS  Google Scholar 

  38. Mihranyan A (2011) Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119(4):2449–2460

    CAS  Google Scholar 

  39. Tian Y, Meng LD, Wu M, Huang Y (2011) Cellulose-based adsorbents – green and economical water treatment material. Environ Chem 30(1):326–330

    CAS  Google Scholar 

  40. Mautner A (2020) Nanocellulose water treatment membranes and filters: a review. Polym Int. wileyonlinelibrary.com. https://doi.org/10.1002/pi.5993

  41. Liang H, Hu X (2016) A quick review of the applications of nano crystalline cellulose in wastewater treatment. J Bioresour Bioprod 1(4):199–204

    Google Scholar 

  42. Barud HS, Souza JL, Santos DB, Crespi MS et al (2011) Bacterial cellulose/poly(3- hydroxybutyrate) composite membranes. Carbohydr Polym 83:1279–1284

    CAS  Google Scholar 

  43. Yusuf M (ed) (2018) Handbook of textile effluent remediation. Pan Stanford Publishing, Temasek Boulevard

    Google Scholar 

  44. Karim Z, Mathew AP, Grahn M, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112(2):668–676

    CAS  Google Scholar 

  45. Zhan H, Peng N, Lei X, Huang Y, Li D, Tao R, Chang C (2018) UV-induced self-cleanable TiO2/nanocellulose membrane for selective separation of oil/water emulsion. Carbohydr Polym 201:464–470

    CAS  Google Scholar 

  46. Derami HG, Jiang Q, Ghim D, Cao S, Chandar YJ et al (2019) A robust and scalable polydopamine/bacterial nanocellulose hybrid membrane for efficient wastewater treatment. ACS Appl Nano Mater 2(2):1092–1101

    Google Scholar 

  47. Cao X, Huang M, Ding B, Yu J, Sun G (2013) Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification. Desalination 316:120–126

    CAS  Google Scholar 

  48. Mokhena TC, Jacobs NV, Luyt AS (2018) Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification. Cellulose 25(1):417–427

    CAS  Google Scholar 

  49. Padervand M, Gholami MR (2013) Removal of toxic heavy metal ions from waste water by functionalized magnetic core–zeolitic shell nanocomposites as adsorbents. Environ Sci Pollut Res 20(6):3900–3909

    CAS  Google Scholar 

  50. Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song W (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943

    CAS  Google Scholar 

  51. Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulose fibers: green remediation of toxic metals. Int J Green Nanotechnol 4:46–53

    CAS  Google Scholar 

  52. Yang R, Aubrecht KB, Ma HY, Wang R, Grubbs RB et al (2014) Thiol-modified cellulose nanofibrous composite membranes for chromium(vi) and lead(ii) adsorption. Polymer 55:1167–1176

    CAS  Google Scholar 

  53. Ma H, Burger C, Hsiao BS, Chu B (2012) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromolecules 13(1):180–186

    Google Scholar 

  54. Ma H, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of uo22+ in water. ACS Macro Lett 1:213–216

    CAS  Google Scholar 

  55. Anirudhan TS, Shainy F (2015) Effective removal of mercury (II) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite. J Colloid Interface Sci 456:22–31

    CAS  Google Scholar 

  56. Yusuf M, Shahid-ul-Islam, Khan MA, Mohammad F (2016) Investigations of the colourimetric and fastness properties of wool dyed with colorants extracted from Indian madder using reflectance spectroscopy. Optik-Int J Light Electron Optics 127(15):6087–6093

    CAS  Google Scholar 

  57. Yusuf M, Ahmad A, Shahid M, Khan MI, Khan SA, Manzoor N, Mohammad F (2012) Assessment of colorimetric, antibacterial and antifungal properties of woollen yarn dyed with the extract of the leaves of henna (Lawsonia inermis). J Clean Prod 27:42–50

    CAS  Google Scholar 

  58. Yusuf M (2019) Synthetic dyes: a threat to the environment and water ecosystem. In: Shabbir M (ed) Textiles and clothing: environmental concerns and solutions. Scrivener Publishing-Wiley, Beverly, pp 11–26

    Google Scholar 

  59. Qiao H, Zhou Y, Yu F, Wang E, Min Y, Huang Q et al (2016) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303

    Google Scholar 

  60. Zhang W, Wang X, Zhang Y, Seppälä J et al (2020) Robust shape-memory nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Sep Purifi Technol 116523. https://doi.org/10.1016/j.seppur.2020.116523

  61. Amiralian N, Mustapic M, Hossain MSA, Wang C et al (2020) Magnetic nanocellulose: a potential material for removal of dye from water. J Hazard Mater 122571. https://doi.org/10.1016/j.jhazmat.2020.122571

  62. Suopajarvi T, Liimatainen H, Horimi O, Niinimaki J (2013) Coagulation-flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem Eng J 231:59–67

    CAS  Google Scholar 

  63. Carlsson DO, Hua K, Forsgren J, Mihranyan A (2014) Aspirin degradation in surface-charged TEMPO-oxidized mesoporous crystalline nanocellulose. Int J Pharm 461(1–2):74–81

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Yusuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yusuf, M. (2020). Cellulose-Based Nanomaterials for Water Pollutant Remediation: Review. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics