Skip to main content

Polymeric and Ceramic Nanoparticles: Possible Role in Biomedical Applications

  • Living reference work entry
  • First Online:
  • 277 Accesses

Abstract

Nanotechnology is an emerging field that deals with the study, design, and application of materials with structural features having at least one dimension in the nanometer range (1–100 nm). The unique size-dependent properties of nanoparticles make them potential candidates for their applications in different areas, ranging from environmental science to an emerging multidisciplinary field that includes chemistry, physics, biology, and medicine. Therefore, it is very important to understand their nature at cellular and biomolecular level. The interaction of nanoparticles with biological macromolecules, such as protein and DNA, proved to be beneficial in therapeutic fields ranging from molecular diagnostics and biosensors to drug discovery, gene/protein delivery, and drug delivery.

Literature is rich in reports illustrating the role of polymeric and ceramic nanoparticle in numerous diagnostic, pharmaceutical, and medical fields because of a number of properties associated with them such as good biocompatibility, easy design, chemical inertness, and high heat resistance. Various natural and synthetic polymers are used to synthesize polymeric nanoparticles (PNPs), and the mostly employed synthetic biocompatible polymers are polyethylene glycol (PEG), polylactic acid (PLA), and poly(lactic-co-glycolic acid) (PLGA). The different types of ceramic nanoparticles (CNPs) used are titania-based ceramics, alumina ceramics, calcium phosphate (CaP), tricalcium phosphate (TCP), hydroxyapatite (HAP), calcium sulfate and calcium carbonate, and bioactive glass ceramics. Among all the areas of polymer and ceramics nanoparticle applications, the most explored one is the biomedical field. Both PNPs and CNPs have been employed as drug delivery agents against various diseases, including cancer, because of their biocompatibility with cells and tissue. Understanding their potential biomedical applications at the molecular level will provide major insight into its future developments and can hold a promising future in numerous areas of health and medicine.

This is a preview of subscription content, log in via an institution.

References

  • Ahmadnia S, Moazeni M, Mohammadi-Samani S, Oryan A (2013) In vivo evaluation of the efficacy of albendazole sulfoxide and albendazole sulfoxide loaded solid lipid nanoparticles against hydatid cyst. Exp Parasitol 135(2):314–319

    Article  CAS  Google Scholar 

  • Ardekani MRS, Abdin MZ, Nasrullah Nazima, Samim Mohd. (2014) Calcium phosphate nanoparticles a novel non-viral gene delivery system for genetic transformation of tobacco. Int J Pharm Pharm Sci 6(6):605–609

    Google Scholar 

  • Balasubramanian S, Gurumurthy B, Balasubramanian A (2017) Biomedical applications of ceramic nanomaterials: A review. Int J Pharm Sci Res 8:4950–4959

    Google Scholar 

  • Bartlett JG, Moore RD (1998) Improving HIV therapy. Sci Am 279(1):84–87. 89

    Article  CAS  Google Scholar 

  • Biswas AK, Islam MR, Choudhury ZS, Mostafa A, Kadir MF (2014) Nanotechnology based approaches in cancer therapeutics. Advances in Natural Sciences: Nanoscience and Nanotechnology 5(4):043001

    Google Scholar 

  • Cerruti M (2012) Surface characterization of silicate bioceramics. Philos Trans R Soc A Math Phys Eng Sci 370(1963):1281–1312

    Article  CAS  Google Scholar 

  • Chen Q, Thouas G (2014) Biomaterials: a basic introduction. CRC Press, Boca Raton

    Book  Google Scholar 

  • Chen YC, Huang XC, Luo YL, Chang YC, Hsieh YZ, Hsu HY (2013) Non-metallic nanomaterials in cancer theranostics: a review of silica-and carbon-based drug delivery systems. Sci Technol Adv Mater 14(4):044407

    Article  CAS  Google Scholar 

  • Chen Y, Chen H, Shi J (2014) Drug delivery/imaging multifunctionality of mesoporous silica-based composite nanostructures. Expert Opin Drug Deliv 11(6):917–930

    Article  CAS  Google Scholar 

  • Cheng CJ, Tietjen GT, Saucier-Sawyer JK, Saltzman WM (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14(4):239

    Article  CAS  Google Scholar 

  • Ciofani G, Ricotti L, Mattoli V (2011) Preparation, characterization and in vitro testing of poly (lactic-co-glycolic) acid/barium titanate nanoparticle composites for enhanced cellular proliferation. Biomed Microdevices 13(2):255–266

    Article  CAS  Google Scholar 

  • Destache CJ, Belgum T, Christensen K, Shibata A, Sharma A, Dash A (2009) Combination antiretroviral drugs in PLGA nanoparticle for HIV-1. BMC infectious diseases 9(1):198

    Google Scholar 

  • Elmowafy M, Samy A, Abdelaziz AE, Shalaby K, Salama A, Raslan MA, Abdelgawad MA (2017) Polymeric nanoparticles based topical gel of poorly soluble drug: formulation, ex-vivo and in vivo evaluation. Beni-Suef Univ J Basic Appl Sci 6(2):184–191

    Article  Google Scholar 

  • Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41(7):2545–2561

    Article  CAS  Google Scholar 

  • Feynman R (1960) There’s plenty of room at the bottom, engineering and science. Eng Sci:22–36

    Google Scholar 

  • Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172(12):1487–1490

    Article  Google Scholar 

  • Ghosh PK (2000) Hydrophilic polymeric nanoparticles as drug carriers

    Google Scholar 

  • Hum J, Boccaccini AR (2012) Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J Mater Sci Mater Med 23(10):2317–2333

    Article  CAS  Google Scholar 

  • Jawahar N, Meyyanathan SN (2012) Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. Int J Health Allied Sci 1(4):217

    Article  Google Scholar 

  • Jayant R, Nair M (2016) Nanotechnology for the treatment of Neuro AIDS. J Nanomed Res 3(1):0047

    Article  Google Scholar 

  • Kaur P, Garg T, Vaidya B, Prakash A, Rath G, Goyal AK (2015) Brain delivery of intranasal in situ gel of nanoparticulated polymeric carriers containing antidepressant drug: behavioral and biochemical assessment. J Drug Target 23(3):275–286

    Article  CAS  Google Scholar 

  • Kreuter J (2001) Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 47(1):65–81

    Article  CAS  Google Scholar 

  • Li D, He J, Huang X, Li J, Tian H, Chen X, Huang Y (2015) Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug. RSC Adv 5(39):30920–30928

    Article  CAS  Google Scholar 

  • Liang P, Wang CQ, Chen H, Zhuo RX, Cheng SX (2014) Multi-functional heparin–biotin/heparin/calcium carbonate/calcium phosphate nanoparticles for targeted co-delivery of gene and drug. Polym Int 64(5):647–653

    Article  CAS  Google Scholar 

  • Lin JT, Wang C, Zhao Y, Wang GH (2014) Mesoporous silica nanoparticles with controlled loading of cationic dendrimer for gene delivery. Mater Res Express 1(3):035403

    Article  CAS  Google Scholar 

  • Liu ZS, Tang SL, Ai ZL (2003) Effects of hydroxyapatite nanoparticles on proliferation and apoptosis of human hepatoma BEL-7402 cells. World J Gastroenterol 9(9):1968

    Article  CAS  Google Scholar 

  • Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, … Farokhzad OC (2010) Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 5(2):269–285

    Article  CAS  Google Scholar 

  • Mendelson BC, Jacobson SR, Lavoipierre AM, Huggins RJ (2010) The fate of porous hydroxyapatite granules used in facial skeletal augmentation. Aesthet Plast Surg 34(4):455–461

    Article  Google Scholar 

  • Moreno-Vega AI, Gomez-Quintero T Nunez-Anita RE, Acosta-Torres LS, Castano V (2012) Polymeric and ceramic nanoparticles in biomedical applications. J Nanotechnol 1–10

    Article  CAS  Google Scholar 

  • Naik DR, Raval JP (2016) Amorphous polymeric binary blend pH-responsive nanoparticles for dissolution enhancement of antiviral drug. J Saudi Chem Soc 20:S168–S177

    Article  CAS  Google Scholar 

  • Noorani L, Stenzel M, Liang R, Pourgholami MH, Morris DL (2015) Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. J Nanobiotechnol 13(1):25

    Article  CAS  Google Scholar 

  • Nowacek AS, McMillan J, Miller R, Anderson A, Rabinow B, Gendelman HE (2010) Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: implications for neuroAIDS therapeutics. J NeuroImmune Pharmacol 5(4):592–601

    Article  Google Scholar 

  • Panseri S, Cunha C, D’Alessandro T, Sandri M, Giavaresi G, Marcacci M, … Tampieri A (2012) Intrinsically superparamagnetic Fe-hydroxyapatite nanoparticles positively influence osteoblast-like cell behaviour. J Nanobiotechnol 10(1):32

    Article  CAS  Google Scholar 

  • Pathak Y, Thassu D (2009) Drug delivery nanoparticles formulation and characterization. Drugs and Pharmaceutical Science Series, Informa Healthcare USA, 67:1–30

    Google Scholar 

  • Paul W, Sharma CP (2003) Ceramic drug delivery: a perspective. J Biomater Appl 17(4):253–264

    Article  CAS  Google Scholar 

  • Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19(9):1310–1316

    Article  CAS  Google Scholar 

  • Rawat P, Manglani K, Gupta S, Vohora D, Ahmad FJ, Talegaonkar S (2015) Design and development of bioceramic based functionalized PLGA nanoparticles of risedronate for bone targeting: in-vitro characterization and pharmacodynamic evaluation. Pharm Res 32(10):3149–3158

    Article  CAS  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2(1):8–21

    Article  CAS  Google Scholar 

  • Sánchez-Salcedo S, Nieto A, Vallet-Regí M (2008) Hydroxyapatite/β-tricalcium phosphate/agarose macroporous scaffolds for bone tissue engineering. Chem Eng J 137(1):62–71

    Article  CAS  Google Scholar 

  • Sarath Chandra V, Baskar G, Suganthi RV, Elayaraja K, Ahymah Joshy MI, Sofi Beaula W, … Narayana Kalkura S (2012) Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release. ACS Appl Mater Interfaces, 4(3):1200–1210

    Article  CAS  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomedicine 7:2767

    CAS  Google Scholar 

  • Seong DY, Kim YJ (2015) Enhanced photodynamic therapy efficacy of methylene blue-loaded calcium phosphate nanoparticles. J Photochem Photobiol B Biol 146:34–43

    Article  CAS  Google Scholar 

  • Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, … Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci 106(46):19268–19273

    Article  CAS  Google Scholar 

  • Taniguchi N, Arakawa C, Kobayashi T (1974) On the basic concept of ‘nano-technology’. In: Proceedings of the international conference on production engineering, 1974-8, vol. 2, pp 18–23

    Google Scholar 

  • Thomas MV, Puleo DA (2009) Calcium sulfate: properties and clinical applications. J Biomed Mater Res B Appl Biomater 88(2):597–610

    Article  CAS  Google Scholar 

  • Vallet-Regí M, Balas F (2008) Silica materials for medical applications. Open Biomed Eng J 2(1):1

    Article  Google Scholar 

  • Wang X, Chen D, Cao L, Li Y, Boyd BJ, Caruso RA (2013) Mesoporous titanium zirconium oxide nanospheres with potential for drug delivery applications. ACS Appl Mater Interfaces 5(21):10926–10932

    Article  CAS  Google Scholar 

  • Wang CQ, Wu JL, Zhuo RX, Cheng SX (2014) Protamine sulfate–calcium carbonate–plasmid DNA ternary nanoparticles for efficient gene delivery. Mol BioSyst 10(3):672–678

    Article  CAS  Google Scholar 

  • Wong LH, Tio B, Miao X (2002) Functionally graded tricalcium phosphate/fluoroapatite composites. Mater Sci Eng C 20(1-2):111–115

    Article  Google Scholar 

  • Wu KCW, Yamauchi Y, Hong CY, Yang YH, Liang YH, Funatsu T, Tsunoda M (2011) Biocompatible, surface functionalized mesoporous titania nanoparticles for intracellular imaging and anticancer drug delivery. Chem Commun 47(18):5232–5234

    Article  CAS  Google Scholar 

  • Wu JL, Wang CQ, Zhuo RX, Cheng SX (2014) Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids Surf B: Biointerfaces 123:498–505

    Article  CAS  Google Scholar 

  • Zhang H, Wang C, Chen B, Wang X (2012) Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system. Int J Nanomedicine 7:235

    CAS  Google Scholar 

  • Zhao CX, Yu L, Middelberg AP (2013) Magnetic mesoporous silica nanoparticles end-capped with hydroxyapatite for pH-responsive drug release. J Mater Chem B 1(37):4828–4833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Kaushik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaushik, S. (2020). Polymeric and Ceramic Nanoparticles: Possible Role in Biomedical Applications. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics