Skip to main content

Different Fillers in PVA Composite Hydrogels: Their Influence on the Final Properties

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Hydrogels are currently used in a large number of biological, medical, and technological applications. They are some of the most important the controlled release of drugs and tissue engineering. These materials are three-dimensional structures swollen in the presence of water or biological fluids while remaining insoluble in aqueous solutions due to chemical or physical cross-linking of individual polymer chains. Polyvinyl alcohol (PVA) is a hydrophilic and low-cost polymer, from which hydrogels can be obtained with the additional advantage of having a high chemical resistance while being biocompatible.

An option to improve many properties of PVA hydrogels is the addition of specific fillers that give the possibility of developing composite hydrogels with desired properties for selected application. The right selection of gel components, the filler and the matrix, with the composition and processing technique is essential to obtain these composites with the desired properties. Some examples are inorganic minerals, such as hydroxyapatite, metal oxides, and carbon nanotubes, which are incorporated into polymer matrices to impart bioactivity or special properties for biomedical applications.

The objective of this chapter is to review the literature concerning classification of hydrogels with different fillers and the influence of these fillers over the final properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bai X, Gao M, Syed S, Zhuang J, Xu X, Zhang XQ (2018) Bioactive hydrogels for bone regeneration. Bioactive Mater 3:401

    Article  Google Scholar 

  • Bhattacharya M (2016) Polymer nanocomposites-A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials (Basel) 9(4):1–35

    Article  CAS  Google Scholar 

  • Charron PN, Braddish TA, Oldinski RA (2019) PVA-gelatin hydrogels formed using combined theta-gel and cryo-gel fabrication techniques. J Mech Behav Biomed Mater [Internet] 92(October 2018):90–96. https://linkinghub.elsevier.com/retrieve/pii/S1751616118315200

    Article  CAS  Google Scholar 

  • Chen K, Zhang D, Yang X, Cui X, Zhang X, Wang Q (2016) Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel. J Mech Behav Biomed Mater [Internet] 62:182–194. https://doi.org/10.1016/j.jmbbm.2016.04.034

    Article  CAS  Google Scholar 

  • Chen X, Chen C, Zhang H, Huang Y, Yang J, Sun D (2017) Facile approach to the fabrication of 3D cellulose nanofibrils (CNFs) reinforced poly(vinyl alcohol) hydrogel with ideal biocompatibility. Carbohydr Polym [Internet] 173:547–555. https://doi.org/10.1016/j.carbpol.2017.06.036

    Article  CAS  Google Scholar 

  • Gonzalez JS, Alvarez VA (2011) Poly(vinyl alcohol) hydrogels: influence of processing variables on general behavior and drug release device performance. In: Wythers MC (ed) Advances in Materials Science Research, vol 10. Nova Science Publishers, Inc., pp 265–285

    Google Scholar 

  • Gonzalez JS, Alvarez VA (2014) Mechanical properties of polyvinylalcohol/hydroxyapatite cryogel as potential arti fi cial cartilage. J Mech Behav Biomed Mater [Internet] 34:47–56. https://doi.org/10.1016/j.jmbbm.2014.01.019

    Article  CAS  Google Scholar 

  • Gonzalez JS, Hoppe CE, Muraca D, Sánchez FH, Alvarez VA (2011) Synthesis and characterization of PVA ferrogels obtained through a one-pot freezing-thawing procedure. Colloid Polym Sci 289(17–18):1839–1846

    Article  CAS  Google Scholar 

  • Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014a) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C [Internet] 34(1):54–61. https://doi.org/10.1016/j.msec.2013.10.006

    Article  CAS  Google Scholar 

  • Gonzalez JS, Nicolás P, Ferreira ML, Avena M, Lassalle VL, Alvarez VA (2014b) Fabrication of ferrogels using different magnetic nanoparticles and their performance on protein adsorption. Polym Int 63(2):258–265

    Article  CAS  Google Scholar 

  • Gonzalez JS, Hoppe CE, Mendoza Zélis P, Arciniegas L, Pasquevich GA, Sánchez FH et al (2014c) Simple and efficient procedure for the synthesis of ferrogels based on physically cross-linked PVA. Ind Eng Chem Res 53(1):214–221

    Article  CAS  Google Scholar 

  • Gonzalez J, Ponce A, Alvarez V (2016) Preparation and characterization of poly (vinylalcohol)/bentonite hydrogels for potential wound dressings. Adv Mater Lett Internet 7(12):979–85. http://www.vbripress.com/aml/articles/details/941/

  • Hassan CM, Peppas NA (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65. Biopolymers PVA hydrogels, anionic polymerisation nanocomposites

    Google Scholar 

  • Huang Y, Zheng Y, Song W, Ma Y, Wu J, Fan L (2011) Poly(vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly(vinyl alcohol) composite hydrogels. Compos Part A Appl Sci Manuf [Internet] 42(10):1398–1405. https://doi.org/10.1016/j.compositesa.2011.06.003

    Article  CAS  Google Scholar 

  • Ibrahim SM, El-Naggar AA (2013) Preparation of poly(vinyl alcohol)/clay hydrogel through freezing and thawing followed by electron beam irradiation for the treatment of wastewater. J Thermoplast Compos Mater 26(10):1332–1348

    Article  CAS  Google Scholar 

  • Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781

    Article  CAS  Google Scholar 

  • Lee HK, Song YS (2019) Anomalous dichroism of cellulose nanowhisker embedded composite film. Compos Part B Eng [Internet] 163(November 2018):1–8. https://doi.org/10.1016/j.compositesb.2018.10.088

    Article  CAS  Google Scholar 

  • Lin SY, Chen KS, Run-Chu L (2001) Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials 22(22):2999–3004

    Article  CAS  Google Scholar 

  • Maiolo AS, Amado MN, Gonzalez JS, Alvarez VA (2012) Development and characterization of Poly (vinyl alcohol) based hydrogels for potential use as an articular cartilage replacement. Mater Sci Eng C [Internet] 32(6):1490–1495. https://doi.org/10.1016/j.msec.2012.04.030

    Article  CAS  Google Scholar 

  • Mathangi Ramakrishnan K, Babu M, Mathivanan JV, Shankar J (2013) Advantages of collagen based biological dressings in the management of superficial and superficial partial thickness burns in children. Ann Burns Fire Disasters 26(2):98–104

    CAS  Google Scholar 

  • Mendoza Zélis P, Muraca D, Gonzalez JS, Pasquevich GA, Alvarez VA, Pirota KR et al (2013) Magnetic properties study of iron-oxide nanoparticles/PVA ferrogels with potential biomedical applications. J Nanopart Res 15(5):1

    Article  Google Scholar 

  • Moscoso-Londoño O, Gonzalez JS, Muraca D, Hoppe CE, Alvarez VA, López-Quintela A et al (2013) Structural and magnetic behavior of ferrogels obtained by freezing thawing of polyvinyl alcohol/poly(acrylic acid) (PAA)-coated iron oxide nanoparticles. Eur Polym J [Internet] 49(2):279–289. https://doi.org/10.1016/j.eurpolymj.2012.11.007

    Article  CAS  Google Scholar 

  • Nishino T, Takano K, Nakamae K, Saitaka K, Itakura S, Azuma J et al (2003) Elastic modulus of the crystalline regions of cellulose triesters. J Polym Sci Part B 33(4):611–618

    Article  Google Scholar 

  • Sanchez LM, Actis DG, Gonzalez JS, Zélis PM, Alvarez VA (2019) Effect of PAA-coated magnetic nanoparticles on the performance of PVA-based hydrogels developed to be used as environmental remediation devices. J Nanopart Res 21(64):1–16

    CAS  Google Scholar 

  • Tong X, Zheng J, Lu Y, Zhang Z, Cheng H (2007) Swelling and mechanical behaviors of carbon nanotube/poly(vinyl alcohol) hybrid hydrogels. Mater Lett 61(8–9):1704–1706

    Article  CAS  Google Scholar 

  • Wang W, Zhu Y, Liao S, Li J (2014) Carbon nanotubes reinforced composites for biomedical applications. Biomed Res Int 2014:1–14

    Google Scholar 

  • Zhang D, Duan J, Wang D, Ge S (2010) Effect of preparation methods on mechanical properties of PVA/HA composite hydrogel. J Bionic Eng [Internet] 7(3):235–243. https://doi.org/10.1016/S1672-6529(10)60246-6

    Article  Google Scholar 

  • Zhu Y, Lu W, Guo Y, Chen Y, Wu Y, Lu H (2018) Biocompatible, stretchable and mineral PVA-gelatin-nHAP hydrogel for highly sensitive pressure sensors. RSC Adv 8(65):36999–37007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate funding by CONICET (National Scientific and Technical Research Council), ANPCyT (National Agency for Scientific and Technological Promotion), and UNMdP (National University of Mar del Plata).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera A. Alvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alvarez, V.A., Gonzalez, J.S. (2019). Different Fillers in PVA Composite Hydrogels: Their Influence on the Final Properties. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics