Skip to main content

Composites Based on Shape Memory Materials

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology
  • 225 Accesses

Abstract

Shape memory properties provide a very attractive insight into materials science, opening unexplored horizons and giving access to unconventional functions in every material class (metals, polymers, and ceramics). Since the discovery of shape memory materials (SMMs), there has been a continuous quest for ways to application of SMMs with the extraordinary properties. Two groups of materials have shown the shape memory effect: shape memory metal alloys (SMAs) and shape memory polymers (SMPs). The intermetallic alloys such as NiTi can be extremely compliant while retaining the strength of metals and can convert thermal energy to mechanical work. The unique properties of SMAs result from a reversible solid-to-solid phase transformation. Among the commercially available SMAs, NiTi alloys in the form of wires, ribbons, or particles are the most widely used because of their excellent mechanical properties and shape memory performance. Also, SMPs can rapidly change their shapes from a temporary shape to their original (or permanent) shapes under appropriate stimulus such as temperature, light, electric field, magnetic field, pH, specific ions, or enzyme. Thermally active SMP belongs to a kind of functional material that can hold a temporary deformation at a temperature below the switching temperature and recover the original shape when it is heated to a temperature above the switching temperature.

The integration of SMMs into composite structures has resulted in many benefits, which include actuation, vibration control, damping, sensing, and self-healing. The SMMs composite complexity that includes strong thermomechanical coupling, large inelastic deformations, and variable thermoelastic properties will have many applications in industry. Nonetheless, as SMMs are becoming increasingly accepted in engineering applications, a similar trend for SMM composites is expected in aerospace, automotive, and energy conversion and storage-related applications. Reinforcement of SMMs with particles and nanoparticles such as carbon nanotubes is new insight to find new extraordinary properties for SMAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amirian M, Sui J, Chakoli AN, Cai W (2011) Properties and degradation behavior of surface functionalized MWCNT/poly (L-lactide-co-ε-caprolactone) biodegradable nanocomposites. J Appl Polym Sci 122(5):3133–3144

    Article  CAS  Google Scholar 

  • Amirian M, Chakoli AN, Sui J, Cai W (2012a) Enhanced shape memory effect of poly (L-lactide-co-ε-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs. J Polym Res 19(2):9777

    Article  CAS  Google Scholar 

  • Amirian M, Chakoli AN, Sui J, Cai W (2012b) Enhanced shape memory effect of poly (L-lactide-co-ε-caprolactone) biodegradable copolymer reinforced with functionalized MWCNTs. J Polym Res 19(2):1–10

    Article  CAS  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J (2007) Magnetic nanoparticles for drug delivery. Nano Today 2(3):22–32

    Article  Google Scholar 

  • Auad ML, Contos VS, Nutt S, Aranguren MI, Marcovich NE (2008) Characterization of nanocellulose-reinforced shape memory polyurethanes. Polym Int 57(4):651–659

    Article  CAS  Google Scholar 

  • Bellin I, Kelch S, Lendlein A (2007) Dual-shape properties of triple-shape polymer networks with crystallizable network segments and grafted side chains. J Mater Chem 17(28):2885–2891

    Article  CAS  Google Scholar 

  • Belmonte A, Russo C, Ambrogi V, Fernández-Francos X, De la Flor S (2017) Epoxy-based shape-memory actuators obtained via dual-curing of off-stoichiometric “thiol–epoxy” mixtures. Polymers 9(3):113

    Article  CAS  Google Scholar 

  • Cai W, Feng X, Sui J (2012) Preparation of multi-walled carbon nanotube-reinforced TiNi matrix composites from elemental powders by spark plasma sintering. Rare Metals 31(1):48–50

    Article  CAS  Google Scholar 

  • Chakoli AN, He J, Chayjan MA, Huang Y, Zhang B (2015) Irradiation of poly (L-lactide) biopolymer reinforced with functionalized MWCNTs. RSC Adv 5(68):55544–55549

    Article  CAS  Google Scholar 

  • Chen G-X, Shimizu H (2008) Multiwalled carbon nanotubes grafted with polyhedral oligomeric silsesquioxane and its dispersion in poly (L-lactide) matrix. Polymer 49(4):943–951

    Article  CAS  Google Scholar 

  • Cho JW, Kim JW, Jung YC, Goo NS (2005) Electroactive shape-memory polyurethane composites incorporating carbon nanotubes. Macromol Rapid Commun 26(5):412–416

    Article  CAS  Google Scholar 

  • Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652

    Article  CAS  Google Scholar 

  • Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67(1):55–60

    Article  CAS  Google Scholar 

  • Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2007) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65

    Article  CAS  Google Scholar 

  • Fei G, Li G, Wu L, Xia H (2012) A spatially and temporally controlled shape memory process for electrically conductive polymer–carbon nanotube composites. Soft Matter 8(19):5123–5126

    Article  CAS  Google Scholar 

  • Feng J, Cai W, Sui J, Li Z, Wan J, Chakoli AN (2008) Poly (L-lactide) brushes on magnetic multiwalled carbon nanotubes by in-situ ring-opening polymerization. Polymer 49(23):4989–4994

    Article  CAS  Google Scholar 

  • Ferrara F, Gimelli A, Luongo A (2014) Small-scale concentrated solar power (CSP) plant: ORCs comparison for different organic fluids. Energy Procedia 45:217–226

    Article  CAS  Google Scholar 

  • Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Shape memory polymer nanocomposites. Acta Mater 50(20):5115–5126

    Article  CAS  Google Scholar 

  • Geng L-H, Peng X-F, Jing X, Li L-W, Huang A, Xu B-P, Chen B-Y, Mi H-Y (2016) Investigation of poly (L-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. J Mater Res 31(3):348–359

    Article  CAS  Google Scholar 

  • Gunes IS, Cao F, Jana SC (2008) Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer 49(9):2223–2234

    Article  CAS  Google Scholar 

  • Guo B, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. SCIENCE CHINA Chem 57(4):490–500

    Article  CAS  Google Scholar 

  • Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng Part G: J Aerosp Eng 221(4):535–552

    Article  CAS  Google Scholar 

  • Hosoda H, Takeuchi S, Inamura T, Wakashima K (2004) Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles. Sci Technol Adv Mater 5(4):503

    Article  CAS  Google Scholar 

  • Hu J (2007) Shape memory polymers and textiles. Elsevier, Amsterdam

    Book  Google Scholar 

  • Huang W, Yang B, Zhao Y, Ding Z (2010) Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J Mater Chem 20(17):3367–3381

    Article  CAS  Google Scholar 

  • Ishida K, Hortensius R, Luo X, Mather PT (2012) Soft bacterial polyester-based shape memory nanocomposites featuring reconfigurable nanostructure. J Polym Sci B Polym Phys 50(6):387–393

    Article  CAS  Google Scholar 

  • Jeon HG, Mather PT, Haddad TS (2000) Shape memory and nanostructure in poly (norbornyl-POSS) copolymers. Polym Int 49(5):453–457

    Article  CAS  Google Scholar 

  • Jung YC, Yoo HJ, Kim YA, Cho JW, Endo M (2010a) Electroactive shape memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes. Carbon 48(5):1598–1603

    Article  CAS  Google Scholar 

  • Jung YC, Kim HH, Kim YA, Kim JH, Cho JW, Endo M, Dresselhaus MS (2010b) Optically active multi-walled carbon nanotubes for transparent, conductive memory-shape polyurethane film. Macromolecules 43(14):6106–6112

    Article  CAS  Google Scholar 

  • Kelch S, Steuer S, Schmidt AM, Lendlein A (2007) Shape-memory polymer networks from oligo [(ε-hydroxycaproate)-co-glycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 8(3):1018–1027

    Article  CAS  Google Scholar 

  • Khan SA, Gambhir S, Ahmad A (2014) Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol. Beilstein J Nanotechnol 5:249

    Article  CAS  Google Scholar 

  • Kim H-S, Park BH, Yoon J-S, Jin H-J (2007) Thermal and electrical properties of poly (L-lactide)-graft-multiwalled carbon nanotube composites. Eur Polym J 43(5):1729–1735

    Article  CAS  Google Scholar 

  • Kim MS, Jun JK, Jeong HM (2008) Shape memory and physical properties of poly (ethyl methacrylate)/Na-MMT nanocomposites prepared by macroazoinitiator intercalated in Na-MMT. Compos Sci Technol 68(7–8):1919–1926

    Article  CAS  Google Scholar 

  • Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) Non-contact actuation of triple-shape effect in multiphase polymer network nanocomposites in alternating magnetic field. J Mater Chem 20(17):3404–3415

    Article  CAS  Google Scholar 

  • Kumar SK, Jouault N, Benicewicz B, Neely T (2013) Nanocomposites with polymer grafted nanoparticles. Macromolecules 46(9):3199–3214

    Article  CAS  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    Article  CAS  Google Scholar 

  • Le H, Kolesov I, Ali Z, Uthardt M, Osazuwa O, Ilisch S, Radusch H-J (2010) Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites. J Mater Sci 45(21):5851–5859

    Article  CAS  Google Scholar 

  • Lee SK, Yoon SH, Chung I, Hartwig A, Kim BK (2011) Waterborne polyurethane nanocomposites having shape memory effects. J Polym Sci, Part A: Polym Chem 49(3):634–641

    Article  CAS  Google Scholar 

  • Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41(12):2034–2057

    Article  CAS  Google Scholar 

  • Lendlein A, Jiang H, Jünger O, Langer R (2005a) Light-induced shape-memory polymers. Nature 434(7035):879

    Article  CAS  Google Scholar 

  • Lendlein A, Schmidt AM, Schroeter M, Langer R (2005b) Shape-memory polymer networks from oligo (ϵ-caprolactone) dimethacrylates. J Polym Sci, Part A: Polym Chem 43(7):1369–1381

    Article  CAS  Google Scholar 

  • Leng J, Lv H, Liu Y, Du S (2008a) Synergic effect of carbon black and short carbon fiber on shape memory polymer actuation by electricity. J Appl Phys 104(10):104917

    Article  CAS  Google Scholar 

  • Leng J, Lan X, Liu Y, Du S, Huang W, Liu N, Phee S, Yuan Q (2008b) Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains. Appl Phys Lett 92(1):014104

    Article  CAS  Google Scholar 

  • Leng J, Wu X, Liu Y (2009) Infrared light-active shape memory polymer filled with nanocarbon particles. J Appl Polym Sci 114(4):2455–2460

    Article  CAS  Google Scholar 

  • Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56(7):1077–1135

    Article  CAS  Google Scholar 

  • Lester BT, Baxevanis T, Chemisky Y, Lagoudas DC (2015) Review and perspectives: shape memory alloy composite systems. Acta Mech 226(12):3907–3960

    Article  Google Scholar 

  • Li D, Luo Y (2001) Effects of TiN nano-particles on porosity and wear behavior of TiC/TiNi tribo composite. J Mater Sci Lett 20(24):2249–2252

    Article  CAS  Google Scholar 

  • Liu C, Mather PT (2004) High thermal conductivity shape memory polymers. In: ANTEC-CONFERENCE PROCEEDINGS. UNKNOWN, pp 3080–3084

    Google Scholar 

  • Liu Y, Gall K, Dunn ML, McCluskey P (2004) Thermomechanics of shape memory polymer nanocomposites. Mech Mater 36(10):929–940

    Article  Google Scholar 

  • Liu Y, Lv H, Lan X, Leng J, Du S (2009) Review of electro-active shape-memory polymer composite. Compos Sci Technol 69(13):2064–2068

    Article  CAS  Google Scholar 

  • Liu XH, Zheng H, Zhong L, Huang S, Karki K, Zhang LQ, Liu Y, Kushima A, Liang WT, Wang JW (2011) Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett 11(8):3312–3318

    Article  CAS  Google Scholar 

  • Liu Y, Du H, Liu L, Leng J (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001

    Article  CAS  Google Scholar 

  • Lu H, Gou J (2012) Fabrication and electroactive responsive behavior of shape–memory nanocomposite incorporated with self-assembled multiwalled carbon nanotube nanopaper. Polym Adv Technol 23(12):1529–1535

    Article  CAS  Google Scholar 

  • Lu X, Cai W, Gao Z (2008) Shape-memory behaviors of biodegradable poly (L-lactide-co-ϵ-caprolactone) copolymers. J Appl Polym Sci 108(2):1109–1115

    Article  CAS  Google Scholar 

  • Lu H, Liu Y, Gou J, Leng J, Du S (2010a) Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer. Smart Mater Struct 19(7):075021

    Article  CAS  Google Scholar 

  • Lu H, Liu Y, Gou J, Leng J, Du S (2010b) Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite. Appl Phys Lett 96(8):084102

    Article  CAS  Google Scholar 

  • Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4(4):310

    Article  CAS  Google Scholar 

  • Luo X, Mather PT (2010) Conductive shape memory nanocomposites for high speed electrical actuation. Soft Matter 6(10):2146–2149

    Article  CAS  Google Scholar 

  • Mather PT, Jeon HG, Haddad T (2000) Strain recovery in POSS hybrid thermoplastics. POLYMER PREPRINTS-AMERICA 41(1):528–529

    CAS  Google Scholar 

  • McKeon-Fischer K, Freeman J (2011) Characterization of electrospun poly (L-lactide) and gold nanoparticle composite scaffolds for skeletal muscle tissue engineering. J Tissue Eng Regen Med 5(7):560–568

    Article  CAS  Google Scholar 

  • Meng Q, Hu J (2009) A review of shape memory polymer composites and blends. Compos A: Appl Sci Manuf 40(11):1661–1672

    Article  CAS  Google Scholar 

  • Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54(9):2199–2221

    Article  CAS  Google Scholar 

  • Miaudet P, Derré A, Maugey M, Zakri C, Piccione PM, Inoubli R, Poulin P (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854):1294–1296

    Article  CAS  Google Scholar 

  • Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136

    Article  CAS  Google Scholar 

  • Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci 103(10):3540–3545

    Article  CAS  Google Scholar 

  • Murphy EB, Wudl F (2010) The world of smart healable materials. Prog Polym Sci 35(1–2):223–251

    Article  CAS  Google Scholar 

  • Nabipour Chakoli A, Wan J, Feng JT, Amirian M, Sui JH, Cai W (2009) Functionalization of multiwalled carbon nanotubes for reinforcing of poly (l-lactide-co-ε-caprolactone) biodegradable copolymers. Appl Surf Sci 256:170–177

    Article  CAS  Google Scholar 

  • Ni Q-Q, C-s Z, Fu Y, Dai G, Kimura T (2007) Shape memory effect and mechanical properties of carbon nanotube/shape memory polymer nanocomposites. Compos Struct 81(2):176–184

    Article  Google Scholar 

  • Nitta S, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14(1):1629–1654

    Article  CAS  Google Scholar 

  • O’Handley RC, Murray S, Marioni M, Nembach H, Allen S (2004) Phenomenology of giant magnetic-field-induced strain in ferromagnetic shape-memory materials. J Appl Phys 87(9):4712–4717

    Article  Google Scholar 

  • Ohki T, Ni Q-Q, Ohsako N, Iwamoto M (2004) Mechanical and shape memory behavior of composites with shape memory polymer. Compos A: Appl Sci Manuf 35(9):1065–1073

    Article  CAS  Google Scholar 

  • Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38(10–11):1487–1503

    Article  CAS  Google Scholar 

  • Paderni K, Pandini S, Passera S, Pilati F, Toselli M, Messori M (2012) Shape-memory polymer networks from sol–gel cross-linked alkoxysilane-terminated poly (ε-caprolactone). J Mater Sci 47(10):4354–4362

    Article  CAS  Google Scholar 

  • Pina S, Oliveira JM, Reis RL (2015) Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater 27(7):1143–1169

    Article  CAS  Google Scholar 

  • Rogers CA, Liang C, Fuller CR (1991) Modeling of shape memory alloy hybrid composites for structural acoustic control. J Acoust Soc Am 89(1):210–220

    Article  Google Scholar 

  • Sabzi M, Babaahmadi M, Rahnama M (2017) Thermally and electrically triggered triple-shape memory behavior of poly (vinyl acetate)/poly (lactic acid) due to graphene-induced phase separation. ACS Appl Mater Interfaces 9(28):24061–24070

    Article  CAS  Google Scholar 

  • Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46(3):281–283

    Article  CAS  Google Scholar 

  • Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27(14):1168–1172

    Article  CAS  Google Scholar 

  • Shimazaki Y, Miyazaki Y, Takezawa Y, Nogi M, Abe K, Ifuku S, Yano H (2007) Excellent thermal conductivity of transparent cellulose nanofiber/epoxy resin nanocomposites. Biomacromolecules 8(9):2976–2978

    Article  CAS  Google Scholar 

  • Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640

    Article  CAS  Google Scholar 

  • Takahashi T, Hayashi N, Hayashi S (1996) Structure and properties of shape-memory polyurethane block copolymers. J Appl Polym Sci 60(7):1061–1069

    Article  CAS  Google Scholar 

  • Thamburaja P, Anand L (2001) Polycrystalline shape-memory materials: effect of crystallographic texture. J Mech Phys Solids 49(4):709–737

    Article  Google Scholar 

  • Tobushi H, Hayashi S, Pieczyska E, Date K, Nishimura Y (2011) Three-way actuation of shape memory composite. Arch Mech 63(5–6):443–457

    Google Scholar 

  • Valavanidis A, Vlachogianni T (2016) Engineered nanomaterials for pharmaceutical and biomedical products new trends, benefits and opportunities. Pharm Bioprocessing 4(1):13–24

    Google Scholar 

  • Venkatesan J, Kim S-K (2014) Nano-hydroxyapatite composite biomaterials for bone tissue engineering—a review. J Biomed Nanotechnol 10(10):3124–3140

    Article  CAS  Google Scholar 

  • Wan J, Cai W, Feng J, Meng X, Liu E (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17(12):1188–1192

    Article  CAS  Google Scholar 

  • Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29(5):205–212

    Article  CAS  Google Scholar 

  • Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B 110:442–458

    Article  CAS  Google Scholar 

  • Wischke C, Lendlein A (2010) Shape-memory polymers as drug carriers – a multifunctional system. Pharm Res 27(4):527–529

    Article  CAS  Google Scholar 

  • Wischke C, Neffe AT, Steuer S, Lendlein A (2009) Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J Control Release 138(3):243–250

    Article  CAS  Google Scholar 

  • Xu X, Chen X, Liu A, Hong Z, Jing X (2007) Electrospun poly (L-lactide)-grafted hydroxyapatite/poly (L-lactide) nanocomposite fibers. Eur Polym J 43(8):3187–3196

    Article  CAS  Google Scholar 

  • Xu B, Huang WM, Pei YT, Chen ZG, Kraft A, Reuben R, De Hosson JTM, Fu YQ (2009) Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur Polym J 45(7):1904–1911

    Article  CAS  Google Scholar 

  • Zeng C, Seino H, Ren J, Yoshie N (2014) Polymers with multishape memory controlled by local glass transition temperature. ACS Appl Mater Interfaces 6(4):2753–2758

    Article  CAS  Google Scholar 

  • Zhang P, Hong Z, Yu T, Chen X, Jing X (2009) In vivo mineralization and osteogenesis of nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with poly (L-lactide). Biomaterials 30(1):58–70

    Article  CAS  Google Scholar 

  • Zhang H, Xia H, Zhao Y (2012) Optically triggered and spatially controllable shape-memory polymer–gold nanoparticle composite materials. J Mater Chem 22(3):845–849

    Article  CAS  Google Scholar 

  • Zhang Y, Nayak RT, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13(10):1633–1645

    Article  CAS  Google Scholar 

  • Zheng X, Zhou S, Li X, Weng J (2006) Shape memory properties of poly (D, L-lactide)/hydroxyapatite composites. Biomaterials 27(24):4288–4295

    Article  CAS  Google Scholar 

  • Zheng N, Fang G, Cao Z, Zhao Q, Xie T (2015) High strain epoxy shape memory polymer. Polym Chem 6(16):3046–3053

    Article  CAS  Google Scholar 

  • Zhu Y, Hu J, Luo H, Young RJ, Deng L, Zhang S, Fan Y, Ye G (2012) Rapidly switchable water-sensitive shape-memory cellulose/elastomer nano-composites. Soft Matter 8(8):2509–2517

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Nabipour Chakoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nabipour Chakoli, A. (2019). Composites Based on Shape Memory Materials. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics