Encyclopedia of Education and Information Technologies

2020 Edition
| Editors: Arthur Tatnall

Data Science Education

  • Johannes MagenheimEmail author
  • Carsten Schulte
Reference work entry
DOI: https://doi.org/10.1007/978-3-030-10576-1_253


 Big data;  Data literacy;  Data science;  Data science education;  Data science education curricula;  Deep learning;  Ethical issues of machine learning and big data;  Machine learning;  Social effects of the application of data science methods

Data science is the art and science of turning data into insights. Data science is a cross-disciplinary area that applies various concepts, methods, algorithms, and processes from diverse scientific disciplines, like mathematics, statistics, computer science, and information science. Data science aims to apply these methods and concepts employing suitable integrated development environments and tools to generate knowledge from partially unstructured, incomplete, and distributed data collections. Depending on the application context, this knowledge can then be transformed into concrete action, e.g., when companies make strategic decisions on future business policy based on trend analysis (Song and Zhu 2017; Parks 2017).

In order to...

This is a preview of subscription content, log in to check access.


  1. A Beginner’s Guide to Neural Networks and Deep Learning (2019). Skymind. http://skymind.ai/wiki/neural-network. Accessed 5 July 2019
  2. Ahmad M, Aftab S, Ali I, Hameed N (2017) Hybrid tools and techniques for sentiment analysis: a review. Int J Multidiscip Sci Eng 8:7Google Scholar
  3. Alharthi A, Krotov V, Bowman M (2017) Addressing barriers to big data. Bus Horiz 60:285–292.  https://doi.org/10.1016/j.bushor.2017.01.002CrossRefGoogle Scholar
  4. Al-Masri A (2019) How does back-propagation in artificial neural networks work? Towards Data Science. https://towardsdatascience.com/how-does-back-propagation-in-artificial-neural-networks-work-c7cad873ea7. Accessed 5 July 2019
  5. Aoun JE (2017) Robot-proof. Mit University Press Group, Cambridge, MACrossRefGoogle Scholar
  6. Artificial Intelligence (AI) vs. Machine Learning vs. Deep Learning (2019). Skymind. http://skymind.ai/wiki/ai-vs-machine-learning-vs-deep-learning. Accessed 5 July 2019
  7. Bello-Orgaz G, Jung JJ, Camacho D (2016) Social big data: recent achievements and new challenges. Inf Fusion 28:45–59.  https://doi.org/10.1016/j.inffus.2015.08.005CrossRefGoogle Scholar
  8. Biehler R, Schulte C (2018) Perspectives for an interdisciplinary data science curriculum in German secondary schools. In: Biehler R, Schulte C, Heinemann B, Budde L, Podworny S, Frischemeier D, Wassong T (eds) Paderbon symposium on data science education at school level 2017: the collected extended abstracts. Universitätsbibliothek Paderborn, Paderborn, pp 2–14Google Scholar
  9. Bigdatasoc (2019) Big data & society: are we outsourcing the curation of history to Facebook? Big Data Soc. http://bigdatasoc.blogspot.com/2019/05/are-we-outsourcing-curation-of-history.html. Accessed 6 July 2019
  10. Blei DM, Smyth P (2017) Science and data science. Proc Natl Acad Sci 114:8689–8692.  https://doi.org/10.1073/pnas.1702076114CrossRefGoogle Scholar
  11. Blum A, Hopcroft J, Kannan R (2018) Foundations of data science. pp 1–479. https://www.cs.cornell.edu/jeh/book.pdf. Accessed 15 July 2019
  12. Bryant C, Gilmour J, Herce-Hagiwara B, Pham AT, Remash H, Remash M, Zimmerman J, Dahlby Albright S, Rebelsky SA (2018) A middle-school code camp experience emphasizing data science for social good. In: Proceedings of the 49th ACM technical symposium on computer science education. ACM, New York (US), pp 1088–1088Google Scholar
  13. Çetinkaya-Rundel M, Rundel C (2018) Infrastructure and tools for teaching computing throughout the statistical curriculum. Am Stat 72:58–65.  https://doi.org/10.1080/00031305.2017.1397549MathSciNetCrossRefGoogle Scholar
  14. Chattamvelli R (2016) Data mining methods, 2nd rev edn. Alpha Science International, S.l: Oxford (UK)Google Scholar
  15. Chen D, Zhao H (2012) Data security and privacy protection issues in cloud computing. In: 2012 International conference on computer science and electronics engineering. IEEE, Hangzhou/Zhejiang, pp 647–651CrossRefGoogle Scholar
  16. Chen M, Mao S, Liu Y (2014) Big data: a survey. Mob Netw Appl 19:171–209.  https://doi.org/10.1007/s11036-013-0489-0CrossRefGoogle Scholar
  17. Chollet F (2017) Deep learning with python. Manning Publications, Shelter Island/New YorkGoogle Scholar
  18. Coulton CJ, Goerge R, Putnam-Hornstein E, de Haan B (2015) Harnessing big data for social good: a grand challenge for social work. American Academy of Social Work and Social Welfare, Cleveland, pp 1–20Google Scholar
  19. CSTA (2017) CSTA computer science standards revised 2017. ACM Computer Science Teachers AssociationGoogle Scholar
  20. Cuquet M, Vega-Gorgojo G, Lammerant H, Finn R (2017) Societal impacts of big data: challenges and opportunities in Europe. p 17. https://arxiv.org/ftp/arxiv/papers/1704/1704.03361.pdf. Accessed 11 Apr 2017
  21. Data Life Cycle|DataONE (2019). https://www.dataone.org/data-life-cycle. Accessed 8 July 2019
  22. DCC Curation Lifecycle Model|Digital Curation Centre (2019). http://www.dcc.ac.uk/resources/curation-lifecycle-model. Accessed 15 July 2019
  23. De Mauro A, Greco M, Grimaldi M (2015) What is big data? A consensual definition and a review of key research topics. Madrid, pp 97–104Google Scholar
  24. De Veaux RD, Agarwal M, Averett M, Baumer BS, Bray A, Bressoud TC, Bryant L, Cheng LZ, Francis A, Gould R (2017) Curriculum guidelines for undergraduate programs in data science. Annu Rev Stat Appl 4:15–30CrossRefGoogle Scholar
  25. Deokar AV, Gupta A, Iyer LS, Jones MC (eds) (2018) Analytics and data science: advances in research and pedagogy. Springer International Publishing, ChamGoogle Scholar
  26. Erickson T, Finzer B, Reichsman F, Wilkerson M (2018) Data moves: one key to data science at the school level. p 6. In M. A. Sorto, A. White, & L. Guyot (Eds.), Looking back, looking forward. Proceedings of the Tenth International Conference on Teaching Statistics (ICOTS10, July, 2018), Kyoto, Japan.Voorburg, The Netherlands: International Statistical Institute. iase-web.org [© 2018 ISI/IASE]Google Scholar
  27. Faundeen JL (2012) Data lifecycle models and concepts v11.docx. CEOSWGISSDSIGTN01Google Scholar
  28. Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manag 35:137–144.  https://doi.org/10.1016/j.ijinfomgt.2014.10.007CrossRefGoogle Scholar
  29. Grillenberger A, Romeike R (2017) Key concepts of data management: an empirical approach. In: Proceedings of the 17th Koli calling conference on computing education research – Koli calling ‘17. ACM Press, Koli, pp 30–39CrossRefGoogle Scholar
  30. Grillenberger A, Romeike R (2018) Developing a theoretically founded data literacy competency model. In: Proceedings of the 13th workshop in primary and secondary computing education. ACM, p 9Google Scholar
  31. Gupta A, Deokar A, Iyer L et al (2018) Big data & analytics for societal impact: recent research and trends. Inf Syst Front 20:185–194.  https://doi.org/10.1007/s10796-018-9846-7CrossRefGoogle Scholar
  32. Harari YN (2017) Homo Deus: a brief history of tomorrow, 1st edn. Vintage, LondonCrossRefGoogle Scholar
  33. Hardin J, Hoerl R, Horton NJ, Nolan D, Baumer B, Hall-Holt O, Murrell P, Peng R, Roback P, Temple Lang D (2015) Data science in statistics curricula: preparing students to “think with data”. Am Stat 69:343–353MathSciNetCrossRefGoogle Scholar
  34. Katal A, Wazid M, Goudar RH (2013) Big data: issues, challenges, tools and good practices. In: 2013 Sixth international conference on contemporary computing (IC3). IEEE, Noida, pp 404–409CrossRefGoogle Scholar
  35. Kearny C, Gerber A, van der Merwe A (2016) Data-driven enterprise architecture and the TOGAF ADM phases. In: 2016 IEEE International conference on systems, man, and cybernetics (SMC). pp 004603–004608Google Scholar
  36. Laney, Doug (2012), Deja VVVu: Gartner’s Original Volume-Velocity-Variety Definition of Big Data, Blog Post posted 08-25-2012 10:52, Reposted and adapted from the Gartner Blog Network; https://community.aiim.org/blogs/doug-laney/2012/08/25/deja-vvvu-gartners-original-volume-velocity-variety-definition-of-big-data Accessed 19 Dec 2019
  37. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444.  https://doi.org/10.1038/nature14539CrossRefGoogle Scholar
  38. Lepri B, Staiano J, Sangokoya D, Letouzé E, Oliver N (2017) The tyranny of data? the bright and dark Sides of data-driven decision-making for social good. Transparent data mining for big and small data 3–24.  https://doi.org/10.1007/978-3-319-54024-5_1
  39. Maimon O, Rokach L (eds) (2010) Data mining and knowledge discovery handbook, 2nd edn. Springer, New YorkzbMATHGoogle Scholar
  40. Mantelero A (2018) AI and big data: a blueprint for a human rights, social and ethical impact assessment. Comput Law Secur Rev 34:754–772.  https://doi.org/10.1016/j.clsr.2018.05.017CrossRefGoogle Scholar
  41. Mau S (2019) The metric society: on the quantification of the social, 1. Polity, Cambridge, UK/MedfordGoogle Scholar
  42. Mittelstadt BD, Allo P, Taddeo M et al (2016) The ethics of algorithms: mapping the debate. Big Data Soc 3:205395171667967.  https://doi.org/10.1177/2053951716679679CrossRefGoogle Scholar
  43. Nielsen M (2019) Neural networks and deep learning. p 224. http://neuralnetworksanddeeplearning.com. Accessed 15 July 2019
  44. Niu N, Xu LD, Bi Z (2013) Enterprise information systems architecture—analysis and evaluation. IEEE Trans Ind Inform 9:2147–2154.  https://doi.org/10.1109/TII.2013.2238948CrossRefGoogle Scholar
  45. O’Neil C (2017) Weapons of math destruction: how big data increases inequality and threatens democracy, 1st edn. Penguin, LondonzbMATHGoogle Scholar
  46. OECD (2014) Working party on security and privacy in the digital economy. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=dsti/iccp/reg(2014)3&doclanguage=en
  47. Pangrazio L, Selwyn N (2019) ‘Personal data literacies’: a critical literacies approach to enhancing understandings of personal digital data. New Media Soc 21:419–437CrossRefGoogle Scholar
  48. Parks DMD (2017) Defining data science and data scientist. University of South Florida, 2017: Tampa (US) p 78Google Scholar
  49. Polya G, (2014) How to solve it.  https://doi.org/10.2307/j.ctvc773pk
  50. Pring B, Brown RH, Davis E, Bahl M, Cook M (2017) 21 jobs of the future a guide to getting – and staying – employed over the next 10 years. CognizantGoogle Scholar
  51. Rahwan I, Cebrian M, Obradovich N, Bongard J, Bonnefon J-F, Breazeal C, Crandall JW, Christakis NA, Couzin ID, Jackson MO, Jennings NR, Kamar E, Kloumann IM, Larochelle H, Lazer D, McElreath R, Mislove A, Parkes DC, Pentland A ‘Sandy’, Roberts ME, Shariff A, Tenenbaum JB, Wellman M (2019) Machine behaviour. Nature 568:477.  https://doi.org/10.1038/s41586-019-1138-yCrossRefGoogle Scholar
  52. Reid Turner C, Fuggetta A, Lavazza L, Wolf AL (1999) A conceptual basis for feature engineering. J Syst Softw 49:3–15.  https://doi.org/10.1016/S0164-1212(99)00062-XCrossRefGoogle Scholar
  53. Reinhardt W, Kadam P, Varlemann T, et al (2012) Supporting scholarly awareness and researchers’ social interactions using PUSHPIN. ARTEL EC-TEL 31–46Google Scholar
  54. Richard C (2019) Artificial neural network: summary and tools. In: Becoming human artifical intelligence magazine. https://becominghuman.ai/artificial-neural-network-summary-and-tools-fdbd8f7fcb60. Accessed 11 July 2019
  55. Ridsdale C, Rothwell J, Smit M, Ali-Hassan H, Bliemel M, Irvine D, Kelley D, Matwin S, Wuetherick B (2015) Strategies and best practices for data literacy education: knowledge synthesis report. Dalhousie University, Halifax (CA)Google Scholar
  56. Rimal BP, Jukan A, Katsaros D, Goeleven Y (2011) Architectural requirements for cloud computing systems: an enterprise cloud approach. J Grid Comput 9:3–26.  https://doi.org/10.1007/s10723-010-9171-yCrossRefGoogle Scholar
  57. Riss UV, Magenheim J, Reinhardt W, Nelkner T, Hinkelmann K (2011) Added value of sociofact analysis for business agility. Papers from the AAAI 2011 spring symposium (SS-11-03 13)Google Scholar
  58. Ruijer E, Grimmelikhuijsen S, van den Berg J, Meijer A (2018) Open data work: understanding open data usage from a practice lens. Int Rev Adm Sci 002085231775306.  https://doi.org/10.1177/0020852317753068
  59. Schaal DS (2011) Forschend-entdeckendes Lernen im naturwissenschaftlichen Unterricht mit mobilen Technologien. p 18. http://bit.ly/2vxhHjm. Accessed 15 July 2019
  60. Schäfer D, Schlee H (2014) Bildverarbeitung. NAO Gesichtserkennung (Reutlingen University) 26.05.2014 http://bit.ly/2vBNRKS Accessed 19 Dec 2019
  61. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117.  https://doi.org/10.1016/j.neunet.2014.09.003CrossRefGoogle Scholar
  62. Schulte C, Budde L (2018) A framework for computing education: hybrid interaction system: the need for a bigger picture in computing education. In: 18th Koli calling international conference on computing education research (Koli Calling ’18). ACM, Koli, p 10Google Scholar
  63. Schulte C, Magenheim J, Müller K, Budde L (2017) The design and exploration cycle as research and development framework in computing education. In: Global Engineering Education Conference (EDUCON), 2017 IEEE. IEEE, New York (US), pp 867–876Google Scholar
  64. Shafique U, Qaiser H (2014) A comparative study of data mining process models (KDD, CRISP-DM and SEMMA). International Journal of Innovation and Scientific Research, 12(1), 217–222Google Scholar
  65. Sivarajah U, Kamal MM, Irani Z, Weerakkody V (2017) Critical analysis of big data challenges and analytical methods. J Bus Res 70:263–286.  https://doi.org/10.1016/j.jbusres.2016.08.001CrossRefGoogle Scholar
  66. Song I-Y, Zhu Y (2016) Big data and data science: what should we teach? Expert Syst 33:364–373.  https://doi.org/10.1111/exsy.12130CrossRefGoogle Scholar
  67. Song I-Y, Zhu Y (2017) Big data and data science: opportunities and challenges of iSchools. J Data Inf Sci 2:1–18.  https://doi.org/10.1515/jdis-2017-0011CrossRefGoogle Scholar
  68. Standards for Mathematical Practice|Common Core State Standards Initiative (2019). http://www.corestandards.org/Math/Practice/. Accessed 15 July 2019
  69. Tang R, Sae-Lim W (2016) Data science programs in US higher education: an exploratory content analysis of program description, curriculum structure, and course focus. Educ Inf 32:269–290Google Scholar
  70. Tedre M (2014) The science of computing: shaping a discipline. Apple Academic Press, Boca RatonzbMATHCrossRefGoogle Scholar
  71. Tedre M, Simon, Malmi L (2018) Changing aims of computing education: a historical survey. Comput Sci Educ 0:1–29.  https://doi.org/10.1080/08993408.2018.1486624CrossRefGoogle Scholar
  72. The Best Machine Learning Tools: Experts’ Top Picks|AltexSoft 2019. https://www.altexsoft.com/blog/datascience/the-best-machine-learning-tools-experts-top-picks/. Accessed 11 July 2019
  73. The Keras Blog – Francois Chollet (2019). https://blog.keras.io/author/francois-chollet.html. Accessed 12 July 2019
  74. The Royal Society. (2017). After the reboot: Computing education in UK schools. Policy Report. Retrieved from https://royalsociety.org/topicspolicy/projects/computing-education/
  75. Thijs A, van den Akker J (2009) Curriculum in development  https://doi.org/10.4135/9781412972024.n637
  76. Trajtenberg M (2018) AI as the next GPT: a political-economy perspective. https://www.nber.org/papers/w24245.pdf. Accessed 15 July 2019
  77. U.S. Geological Survey, Faundeen J, Hutchison V, U.S. Geological Survey (2017) The evolution, approval and implementation of the U.S. Geological survey science data lifecycle model. J ESci Libr 6:e1117.  https://doi.org/10.7191/jeslib.2017.1117CrossRefGoogle Scholar
  78. Weigend A (2017) Data for the people: how to make our post-privacy economy work for you. Basic Books, New YorkGoogle Scholar
  79. Wing JM (2006) Computational thinking. Commun ACM 49:33.  https://doi.org/10.1145/1118178.1118215CrossRefGoogle Scholar
  80. Winter R, Fischer R (2006) Essential layers, artifacts, and dependencies of enterprise architecture. In: 2006 tenth IEEE international enterprise distributed object computing conference workshops (EDOCW’06). pp 30–30Google Scholar
  81. Wirth R, Hipp J (2000) CRISP-DM: Towards a standard process model for data mining. In: proceedings of the fourth international conference on the practical application of knowledge discovery and data mining. pp 29–39. https://doi.org/
  82. Zhang Y, Ren J, Liu J, Xu C, Guo H, Liu Y (2017) A survey on emerging computing paradigms for big data. Chin J Electron 26:1–12.  https://doi.org/10.1049/cje.2016.11.016CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Computer Science Education Working GroupPaderborn University, Institute of Computer SciencePaderbornGermany

Section editors and affiliations

  • Bill Davey
    • 1
  1. 1.RMIT UniversityMelbourneAustralia