Skip to main content

Gravity Anomalies, Interpretation

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

In geophysics gravity anomalies are generally defined as the difference between observed gravity field and the field of a reference model. Depending on the reference gravity model, two different types of anomaly variations are considered: gravity anomalies and gravity disturbances. The geodetic gravity anomaly is defined as the difference between gravity on the geoid and normal gravity on the reference ellipsoid (Blakely 1995; Heiskanen and Moritz 1967). On the other hand, the gravity disturbance is defined as the difference of the fields at the same point on the reference ellipsoid. It has been demonstrated that the gravity disturbances are more appropriate for geophysical purposes (e.g., Hackney and Featherstone 2003). In any case, it is necessary to take into account this difference in the interpretation. For more details see “Gravity, Data to Anomalies.” Here we use the general term “anomalies” for both types as traditionally accepted in geophysics.

The observed gravity...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Artemjev ME, Kaban MK, Kucherinenko VA, Demjanov GV, Taranov VA (1994) Subcrustal density inhomogeneities of Northern Eurasia as derived from the gravity data and isostatic models of the lithosphere. Tectonophysics 240:249–280

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, New York. 441 p

    Book  Google Scholar 

  • Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788

    Article  Google Scholar 

  • Hackney RI, Featherstone WE (2003) Geophys J Int 154:35–43

    Article  Google Scholar 

  • Hager BH, O’Connel RJ (1981) A simple global model of plate dynamics and mantle convection. J Geophys Res 86:4843–4867

    Article  Google Scholar 

  • Heiskanen W, Moritz H (1967) Physical geodesy. W.H. Freeman, San Francisco

    Google Scholar 

  • Kaban MK, Schwintzer P (2001) Oceanic upper mantle structure from experimental scaling of VS and density at different depths. Geophys J Int 147:199–214

    Article  Google Scholar 

  • Kaban MK, Schwintzer P, Artemieva IM, Mooney WD (2003) Density of the continental roots: compositional and thermal contributions. Earth Planet Sci Lett 209:53–69

    Article  Google Scholar 

  • Kaban MK, El Khrepy S, Al-Arifi N, Tesauro M, Stolk W (2016) Three dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes. J Geophys Res Solid Earth 121. https://doi.org/10.1002/2015JB012755

    Google Scholar 

  • Kimbell GS, Ayala C, Gerdes A, Kaban MK, Shapiro VA, Menshikov YP (2002) Insights into the architecture and evolution of the southern and middle Urals from gravity and magnetic data. In: Brown D et al (eds) Mountain building in the Uralides: Pangea to the present. Geophysical Monograph, vol 13. American Geophysical Union, Washington, DC, pp 49–65

    Chapter  Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1. 0 – A 1-degree global model of Earth’s crust. In: Geophysical Research Abstract, vol 15. EGU General Assembly, Vienna, p 2658

    Google Scholar 

  • Silva JBC, Costa DCL, Barbosa VCF (2006) Gravity inversion of basement relief and estimation of density contrast variation with depth. Geophysics 71(5):J51–J58

    Article  Google Scholar 

  • Simmons NA, Forte AM, Grand SP (2009) Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity; implications for the relative importance of thermal versus compositional heterogeneity. Geophys J Int 177:1284–1304

    Article  Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1956–1961

    Article  Google Scholar 

  • Strakhov VN, Romanyuk TV (1985) Reconstruction of the density of the Earth’s crust and upper mantle from deep seismic sounding and gravimetric data; I. Izv Phys Solid Earth 20(6):438–449

    Google Scholar 

  • Tesauro M, Kaban MK, Cloetingh S (2008) EuCRUST-07: a new reference model for the European crust. Geophys Res Lett 35. https://doi.org/10.1029/2007GL032244

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill posed problems. V. H. Winston, New York, p 258

    Google Scholar 

  • Van der Meijde M, Fadel IEAM, Ditmar P, Hamayun M (2015) Uncertainties in crustal thickness models for data sparse environments: a review for South America and Africa. J Geodyn 84:1–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail K. Kaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaban, M.K. (2019). Gravity Anomalies, Interpretation. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_88-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_88-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics