Skip to main content

Ocean Bottom Seismics

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 38 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Arroyo IG, Husen S, Flueh ER, Gossler J, Kissling E, Alvarado GE (2009) Three-dimensional P-wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off- and onshore networks. Geophys J Int 179:827–849

    Article  Google Scholar 

  • Barkved OI, Kristiansen T (2005) Seismic time-lapse effects and stress changes: examples from a compacting reservoir. Lead Edge 24:1244–1248

    Article  Google Scholar 

  • Barley B, Summers T (2007) Multi-azimuth and wide-azimuth seismic: shallow to deep water, exploration to production. Lead Edge 26:450–457

    Article  Google Scholar 

  • Beranzoli L, Braun T, Calcara M, Casale P, DeSantis A, D’Anna G, DiMauro DGE, Favali P, Fuda J-L, Frugoni F, Gamberi F, Marani M, Millot C, Montuori C, Smriglio G (2003) Mission results from the first GEOSTAR observatory (AdriaticSea, 1998). Earth Planets Space 55:361–373

    Article  Google Scholar 

  • Brueckmann W, Tyron MD, Bialas J, Feseker T, Lefeldt MR (2009) Monitoring the dynamic properties of an active Mud Volcano in the West Nile Delta. Eos Trans AGU, 90, Fall meeting supplement, Abstract OS21A-1156

    Google Scholar 

  • Caldwell J (1999) Marine multicomponent seismology. Lead Edge 18:1274–1282

    Article  Google Scholar 

  • Christeson GL, Nakamura Y, McIntosh KD, Stoffa PL (1996) Effect of shot interval on ocean bottom seismograph and hydrophone data. Geophys Res Lett 23:3783–3786

    Article  Google Scholar 

  • Constable S, Srnka LJ (2007) Special section – marine controlled-source electromagnetic methods: an introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 72:WA3–WA12

    Article  Google Scholar 

  • Crawford WC, Webb SC, Hildebrand JA (1991) Seafloor compliance observed by long-period pressure and displacement measurements. J Geophys Res 96(B):16151–16160

    Article  Google Scholar 

  • Eccles JD, White RS, Christie PAF (2009) Identification and inversion of converted shear waves: case studies from the European North Atlantic continental margins. Geophys J Int 179:381–400

    Article  Google Scholar 

  • Gaiser J, Loinger E, Lynn H, Vetri L (2002) Birefringence analysis at Emilio field for fracture characterization. First Break 20:505–514

    Article  Google Scholar 

  • Granli JR, Arntsen B, Sollid A, Hilde E (1999) Imaging through gas-filled sediments using marine shear-wave data. Geophysics 64:668–677

    Article  Google Scholar 

  • Grion S, Exley R, Manin M, Miao X-G, Pica A, Wang Y, Granger P-Y, Ronen S (2007) Mirror imaging of OBS data. First Break 25:37–42

    Article  Google Scholar 

  • Hobro JWD, Minshull TA, Singh SC (1998) Tomographic seismic studies of the methane hydrate stability zone in the Cascadia margin. In: Henriet JP, Mienert J (eds) Gas hydrates; relevance to world margin stability and climatic change. Geological society of London special publication, vol 137. Geological Society, London, pp 133–140

    Google Scholar 

  • Husen S, Kissling E, Flueh E, Asch G (1999) Accurate hypocentre determination in the seismogenic zone of the subducting Nazca Plate in northern Chile using a combined on-/offshore network. Geophys J Int 138:687–701

    Article  Google Scholar 

  • Huws DG, Davis AM, Pyrah JR (2000) A nondestructive technique for predicting the in situ void ratio for marine sediments. Mar Georesour Geotechnol 18:333–346

    Article  Google Scholar 

  • Kaneda Y, Kawaguchi K, Araki E, Sakuma A, Matsumoto H, Nakamura T, Kamiya S, Ariyoshi K, Baba T, Ohori M, Hori T (2009) Dense Ocean floor network for earthquakes and tsunamis (DONET) – development and data application for the mega thrust earthquakes around the Nankai trough. Eos Trans AGU, 90, Fall meeting supplement, Abstract S53A-1453

    Google Scholar 

  • Kodaira S, Takahashi N, Kato A, Park J-O, Iwasaki T, Kaneda Y (2000) High pore fluid pressure may cause silent slip in the NankaiTrough. Science 308:1295–1298

    Google Scholar 

  • Korenaga J, Holbrook WS, Singh SC, Minshull TA (1997) Natural gas hydrates on the southeast US margin: constraints from full waveform inversion and traveltime inversion of wide-angle seismic data. J Geophys Res 102(B):15345–15365

    Article  Google Scholar 

  • Korenaga J, Holbrook WS, Kent GM, Kelemen PB, Detrick RS, Larsen HC, Hopper JR, Dahl-Jensen T (2000) Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. J Geophys Res 105(B):21,591–21,614

    Article  Google Scholar 

  • MacLeod MK, Hanson RA, Bell CR (1999) The Alba field ocean bottom cable seismic survey: impact on development. Lead Edge 18:1306–1312

    Article  Google Scholar 

  • Margrave GF, Lawton DC, Stewart RR (1998) Interpreting channel sands with 3C-3D seismic data. Lead Edge 17:509–513

    Article  Google Scholar 

  • Morgan JV, Christeson GL, Zelt CA (2002) Testing the resolution of a 3D velocity tomogram across the Chicxulub crater. Tectonophysics 355:215–226

    Article  Google Scholar 

  • Nguyen XN, Dahm T, Grevemeyer I (2009) Inversion of Scholte wave dispersion and waveform modeling for shallow structure of the Ninetyeast ridge. J Seismol 13:543–559

    Article  Google Scholar 

  • Peacock S, Westbrook GK, Graham DP (1997) Seismic velocities in the northern Barbados ridge accretionary comples, site 949. In: Shipley TH, Ogawa Y, Blum P, Bahr JM (eds) Proceedings ODP, scientific results, vol 156. Ocean Drilling Program, College Station, pp 263–275

    Google Scholar 

  • Plaza-Faverola A, Bünz S, Mienert J (2010) Fluid distributions inferred from P-wave velocity and reflection seismic amplitude anomalies beneath the Nyegga pockmark field of the mid-Norwegian margin. Mar Pet Geol 27:46–60

    Article  Google Scholar 

  • Rafavich F, Kendall CHSC, Todd TP (1984) The relationship between acoustic propertoes and the petrographic character of carbonate rocks. Geophysics 49:1622–1636

    Article  Google Scholar 

  • Sourbier F, Operto S, Virieux J, Amestoy P, L’Excellent J-Y (2009a) FWT2D: a massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data – part 1 algorithm. Comput Geosci 35:487–495

    Article  Google Scholar 

  • Sourbier F, Operto S, Virieux J, Amestoy P, L’Excellent J-Y (2009b) FWT2D: a massively parallel program for frequency-domain full-waveform tomography of wide-aperture seismic data – part 2 numerical examples and scalability analysis. Comput Geosci 35:496–514

    Article  Google Scholar 

  • Stewart RS, Gaiser JE, Brown RJ, Lawton DC (2002) Converted-wave seismic exploration: methods. Geophysics 67:1348–1363

    Article  Google Scholar 

  • Talwani M, Zelt B (1998) Some recent developments in the acquisition and processing of seismic data. Tectonophysics 286:123–142

    Article  Google Scholar 

  • Willoughby EC, Latychev K, Edwards RN, Schwalenberg K, Hyndman RD (2008) Seafloor compliance imaging of marine gas hydrate deposits and cold vent structures. J Geophys Res 113:B07107

    Article  Google Scholar 

  • Zelt CA, Smith RB (1992) Seismic traveltime inversion for 2-D crustal velocity structure. Geophys J Int 108:16–34

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Stuart Henrys (GNS Science) and an anonymous external reviewer for constructive comments. We also thank Jennifer Eccles (University of Auckland, New Zealand) and Frank Krüger (University of Potsdam, Germany) for providing the images in Figs. 3 and 4, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo A. Pecher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pecher, I.A., Bialas, J., Flueh, E.R. (2020). Ocean Bottom Seismics. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_60-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_60-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics