Skip to main content

Core-Mantle Coupling

  • Living reference work entry
  • First Online:
  • 101 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition, Scope, and Aims

The Earth is not a perfect timekeeper, and the spectrum of the variations in the mantle’s angular velocity \( \hat{\boldsymbol{\Omega}} \) spans a wide range of frequencies. Of particular interest here are the comparatively large amplitude decadal and semidecadal variations in which changes in length of day, P, of up to 2 ms occur. These would not be explained even if the global circulations of the atmosphere and oceans could be reversed. This is confirmed by a more detailed argument given in our recent review (Roberts and Aurnou 2012), which will be referred to here as “RA12.”

The origin of these length of day (LOD) variations must be sought in the Earth’s core, and Fig. 1 suggests that the task is not an easy one. Fig. 1b shows dP/dt, derived by differentiating smoothed LOD data from the last half century, with atmospheric, oceanic, and tidal signals removed; semi-decadal time variations are clearly seen with a period τLODof about 6 years (e.g., Abarca...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Abarca del Rio R, Gambis R, Salstein DA (2000) Interannual signals in length of day and atmospheric angular momentum. Ann Geophys 18:347–364

    Google Scholar 

  • Alboussière T, Deguen R, Melzani M (2010) Melting induced stratification above the Earth’s inner core due to convective translation. Nature 466:744–747

    Google Scholar 

  • Anufriev AP, Braginsky SI (1975) Influence of irregularities of the boundary of the Earth’s core on the velocity of the liquid and on the magnetic field. Geomagn Aeron 15:754–757

    Google Scholar 

  • Anufriev AP, Braginsky SI (1977a) Influence of irregularities of the boundary of the Earth’s core on the fluid velocity and the magnetic field, II. Geomagn Aeron 17:78–82

    Google Scholar 

  • Anufriev AP, Braginsky SI (1977b) Influence of irregularities of the boundary of the Earth’s core on the fluid velocity and the magnetic field, III. Geomagn Aeron 17:742–750

    Google Scholar 

  • Braginsky SI (1970) Torsional magnetohydrodynamic vibrations in the Earth’s core and variations in day length. Geomagn Aeron 10:1–8

    Google Scholar 

  • Braginsky SI (1984) Short-period geomagnetic secular variation. Geophys Astrophys Fluid Dyn 30:1–78

    Google Scholar 

  • Braginsky SI (1999) Dynamics of the stably stratified ocean at the top of the core. Phys Earth Planet Inter 111:21–34

    Google Scholar 

  • Braginsky SI, Roberts PH (1995) Equations governing convection in Earth’s core and the geodynamo. Geophys Astrophys Fluid Dyn 79:1–97

    Google Scholar 

  • Braginsky SI, Roberts PH (2007) Anelastic and Boussinesq approximations. In: Gubbins D, Herrero-Bervera E (eds) Encyclopedia of geomagnetism and paleomagnetism. Springer, Heidelberg, pp 11–19

    Google Scholar 

  • Brito D, Aurnou JM, Cardin P (2004) Turbulent viscosity measurements relevant to planetary core-mantle dynamics. Phys Earth Planet Inter 141:3–8

    Google Scholar 

  • Buffett BA (1996) Gravitational oscillations in the length of day. Geophys Res Lett 23:2279–2282

    Google Scholar 

  • Buffett BA (1997) Geodynamic estimates of the viscosity of the Earth’s inner core. Nature 388:571–573

    Google Scholar 

  • Buffett BA (1998) Free oscillations in the length of day: inferences on physical properties near the core-mantle boundary. Geodynamics 28:153–165

    Google Scholar 

  • Buffett BA (2010) Chemical stratification at the top of Earth’s core: constraints from nutation observations. Earth Planet Sci Lett 296:367–372

    Google Scholar 

  • Buffett BA, Christensen UR (2007) Magnetic and viscous coupling at the core-mantle boundary; inferences from observations of the Earth’s nutations. Geophys J Int 171:145–152

    Google Scholar 

  • Buffett BA, Glatzmaier GA (2000) Gravitational braking of inner-core rotation in geo-dynamo simulations. Geophys Res Lett 27:3125–3128

    Google Scholar 

  • Buffett BA, Mathews PM, Herring TA (2002) Modeling of nutation and precession: effects of electromagnetic coupling. J Geophys Res 107:2070. https://doi.org/10.1029/2000JB000056

    Article  Google Scholar 

  • Buffett BA, Mound J, Jackson A (2009) Inversion of torsional oscillations for the structure and dynamics of Earth’s core. Geophys J Int 177:878–890

    Google Scholar 

  • Dai W, Song X (2008) Detection of motion and heterogeneity in Earth’s liquid outer core. Geophys Res Lett 35:L16311

    Google Scholar 

  • Davidson PA (2001) An introduction to magnetohydrodynamics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Davidson PA (2004) Turbulence. Oxford University Press, Oxford, UK

    Google Scholar 

  • de Wijs GA, Kresse G, Vocadlo I, Dobson DP, Alfèe D, Gillan MJ, Price GD (1998) The viscosity of liquid iron at the physical conditions of Earth’s core. Nature 392:805–807

    Google Scholar 

  • Defraigne P, Dehant V, Wahr J (1996) Internal loading of an inhomogeneous compressible mantle with phase boundaries. Geophys J Int 125:173–192

    Google Scholar 

  • Deleplace B, Cardin P (2006) Viscomagnetic torque at the core-mantle boundary. Geophys J Int 167:557–566

    Google Scholar 

  • Dobson DP, Crichton WA, Vočadlo I, Jones AP, Wang Y, Uchida T, Rivers M, Sutton S, Brodhardt JP (2000) In situ measurements of viscosity of liquids in the Fe-FeS system at high pressures and temperatures. Am Mineral 85:1838–1842

    Google Scholar 

  • Dormy E, Roberts PH, Soward AM (2007) Core, boundary layers. In: Gubbins D, Herrero Bervera E (eds) Encylopedia of geomagnetism and paleomagnetism. Springer, Heidelberg, pp 111–116

    Google Scholar 

  • Dumberry M (2007) Taylor’s constraint and torsional oscillations. In: Cardin P, Cugliandolo LF (eds) Dynamos. Elsevier, Amsterdam, pp 383–401

    Google Scholar 

  • Dumberry M (2010) Gravity variations induced by core flows. Geophys J Int 180:635–650

    Google Scholar 

  • Dumberry M, Mound J (2008) Constraints on core-mantle electromagnetic coupling from torsional oscillation normal modes. J Geophys Res 113:B03102. https://doi.org/10.1029/2007JB005135

    Article  Google Scholar 

  • Elsasser WM (1946) Induction effects in terrestrial magnetism, II. The secular variation. Phys Rev 70:202–212

    Google Scholar 

  • Fearn DR, Loper DE, Roberts PH (1981) Structure of the Earth’s inner core. Nature 292:232–233

    Google Scholar 

  • Finlay CC, Dumberry M, Chulliat A, Pais MA (2010) Short timescale core dynamics: theory and observations. Space Sci Rev 155:177–218. https://doi.org/10.1007/s11214-010-9691-6

    Article  Google Scholar 

  • Forte AM, Woodward RJ, Dziewonski AM (1994) Joint inversion of seismic and geo-dynamic data for models of three dimensional mantle heterogeneity. J Geophys Res 99:21857–21877

    Google Scholar 

  • Gargett AE (1984) Vertical eddy diffusivity in the ocean interior. J Mar Res 42:359–393

    Google Scholar 

  • Gillet N, Jault D, Canet E, Fournier A (2010) Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465(7294):74–77. https://doi.org/10.1038/nature09010

    Article  Google Scholar 

  • Glatzmaier GA, Roberts PH (1995) A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys Earth Planet Inter 91:63–75

    Google Scholar 

  • Goldreich PM, Mitchell JL (2010) Elastic ice shells and synchronous moons: implications for cracks on Europa and non-synchronous rotation on Titan. Icarus. https://doi.org/10.1016/j.icarus.2010.04.013

  • Gross RS (2001) A combined length-of-day series spanning 1832–1997: LUNAR97. Phys Earth Planet Inter 123:65–76

    Google Scholar 

  • Gross RS (2007) Earth rotation variations – long period. In: Herring TA (ed) Physical geodesy. Treatise on geophysics, vol 3. Elsevier, Oxford, pp 239–294

    Google Scholar 

  • Gross RS (2009) Ocean tidal effects on Earth rotation. J Geodyn 48:219–225

    Google Scholar 

  • Heimpel MH, Aurnou JM (2007) Turbulent convection in rapidly rotating spherical shells: a model for equatorial and high latitude jets on Jupiter and Saturn. Icarus 187:540–557

    Google Scholar 

  • Hide R (1969) Interaction between the Earth’s liquid core and solid mantle. Nature 222:1055–1956

    Google Scholar 

  • Hide R (1998) A note on topographic core-mantle coupling. Phys Earth Planet Inter 109:91–92

    Google Scholar 

  • Hide R, James IN (1983) Differential rotation produced by potential vorticity mixing in a rapidly rotating fluid. Geophys J R Astron Soc 74:301–312

    Google Scholar 

  • Hide R, Clayton RW, Hager BH, Speith MA, Voorhies CV (1993) Topographic core-mantle coupling and fluctuations in Earth’s rotation. In: Aki K, Dmowska R (eds) Relating geophysical structures and processes: the Jeffreys volume. Geophysical monograph series, vol 76. AGU, Washington, DC, pp 107–120

    Google Scholar 

  • Holme R (1998) Electromagnetic core-mantle coupling-I. Explaining decadal changes in the length of day. Geophys J Int 132:167–180

    Google Scholar 

  • Holme R, de Viron O (2005) Geomagnetic jerks and a highresolution length-of-day profile for core studies. Geophys J Int 160:435–439

    Google Scholar 

  • Hulot G, Eymin C, Langlais B, Mandea M, Olsen N (2002) Small-scale structure of the geodynamo inferred from Oersed and Magsat satellite data. Nature 416:620–623

    Google Scholar 

  • Jackson A (1997) Time-dependency of tangentially geostrophic core surface motions. Phys Earth Planet Inter 103:293–311

    Google Scholar 

  • Jackson A (2003) Intense equatorial flux spots on the surface of Earth’s core. Nature 424:760–763

    Google Scholar 

  • Jacobs JA (1953) The Earth’s inner core. Nature 172:297–298

    Google Scholar 

  • Jault D (2003) Electromagnetic and topographic coupling, and LOD variations. In: Jones CA, Soward AM, Zhang K (eds) Earth’s core and lower mantle. Taylor and Francis, London, pp 46–76

    Google Scholar 

  • Jault D, Le Mouël JL (1989) The topographic torque associated with a tangentially geostrophic motion at the core surface and inferences on the flow inside the core. Geophys Astrophys Fluid Dyn 48:273–296

    Google Scholar 

  • Jault D, Le Mouël JL (1999) Comment on ‘On the dynamics of topographic core-mantle coupling’ by Weijia Kuang and Jeremy Bloxham. Phys Earth Planet Inter 114:211–215

    Google Scholar 

  • Jault D, Gire C, LeMouel J-L (1988) Westward drift, core motions and exchanges of angular momentum between core and mantle. Nature 333:353–356

    Google Scholar 

  • Kawai K, Tsuchiya T (2009) Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0905920106

  • Kuang W-J, Bloxham J (1993) The effect of boundary topography on motions in the Earth’s core. Geophys Astrophys Fluid Dyn 72:161–195

    Google Scholar 

  • Kuang W-J, Bloxham J (1997) On the dynamics of topographic core-mantle coupling. Phys Earth Planet Inter 99:289–294

    Google Scholar 

  • Kuang W-J, Chao BF (2001) Topographic core-mantle coupling in geodynamo modeling. Geophys Res Lett 28:1871–1874

    Google Scholar 

  • Loper DE (2007) Turbulence and small-scale dynamics in the core. In: Olson PL (ed) Core dynamics. Treatise on geophysics, vol 8. Elsevier, Amsterdam, pp 187–206

    Google Scholar 

  • Love JJ, Bloxham J (1994) Electromagnetic coupling and the toroidal magnetic field at the core-mantle boundary. Geophys J Int 117:235–256

    Google Scholar 

  • Margot JL, Peale SJ, Jurgens RF, Slade MA, Holin IV (2007) Large longitude libration of Mercury reveals a molten core. Science 316:710–714

    Google Scholar 

  • Mathews PM, Herring TA, Buffett BA (2002) Modeling of nutation and precession: new nutation series for nonrigid Earth and insights into the Earth’s interior. J Geophys Res 107:2068. https://doi.org/10.1029/2001JB000390

    Article  Google Scholar 

  • Monnereau M, Calvet M, Margerin L, Souriau A (2010) Lopsided growth of Earth’s inner core. Science 328:1014–1017

    Google Scholar 

  • Morse SA (1986) Adcumulus growth of the inner core. Geophys Res Lett 13:1466–1469

    Google Scholar 

  • Mound JE, Buffett BA (2003) Interannual oscillations in length of day: implications for the structure of the mantle and core. J Geophys Res 108:2334. https://doi.org/10.1029/2002JB002054

    Article  Google Scholar 

  • Mound JE, Buffett BA (2005) Mechanisms of core-mantle angular momentum exchange and the observed spectral properties of torsional oscillations. J Geophys Res 110:B08103. https://doi.org/10.1029/2004JB003555

    Article  Google Scholar 

  • Mound J, Buffett B (2006) Detection of a gravitational oscillation in length-of-day. Earth Planet Sci Lett 243:383–389

    Google Scholar 

  • Müller U, Bühler L (2001) Magnetofluiddynamics in channels and containers. Springer, Heidelberg

    Google Scholar 

  • Noir J, Hemmerlin F, Wicht J, Baca SM, Aurnou JM (2009) An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans. Phys Earth Planet Inter 173:141–152

    Google Scholar 

  • Ohta K, Onada S, Hirose K, Sinmyo R, Shimizu K, Saya N, Ohishi Y, Yasuhara A (2008) The electrical conductivity of post-perovskite in Earth’s D″ layer. Science 320:89–91

    Google Scholar 

  • Olsen N, Mandea M (2008) Rapidly changing flows in the Earth’s core. Nat Geosci 1:390–394

    Google Scholar 

  • Roberts PH, Aurnou JM (2012) On the theory of core-mantle coupling. Geophys Astrophys Fluid Dyn (to appear)

    Google Scholar 

  • Roberts PH, Soward AM (1972) Magnetohydrodynamics of the Earth’s core. Annu Rev Fluid Mech 4:117–154

    Google Scholar 

  • Roberts PH, Yu ZJ, Russell CT (2007) On the 60-year signal from the core. Geophys Astrophys Fluid Dyn 43:321–330

    Google Scholar 

  • Rogers TM, Glatzmaier GA (2006) Angular momentum transport by gravity waves in the solar interior. Geophys Astrophys Fluid Dyn 653:756–764

    Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Sprague M, Julien K, Knobloch E, Werne J (2006) Numerical simulation of an asymptotically reduced system for rotationally constrained convection. J Fluid Mech 551:141–174

    Google Scholar 

  • Stellmach S, Hansen U (2004) Cartesian convection driven dynamos at low Ekman number. Phys Rev E 70:056312

    Google Scholar 

  • Stix M, Roberts PH (1984) Time-dependent electromagnetic core-mantle coupling. Phys Earth Planet Inter 36:49–60

    Google Scholar 

  • Tanaka S (2010) Constraints on the core-mantle boundary topography from P4KP-PcP differential travel times. J Geophys Res 115:B04310. https://doi.org/10.1029/2009JB006563

    Article  Google Scholar 

  • Taylor JB (1963) The magnetohydrodynamics of a rotating fluid and the Earth’s dynamo problem. Proc R Soc Lond A274:274–283

    Google Scholar 

  • Tyler RH (2008) Strong ocean tidal flow and heating on moons of the outer planets. Nature 456:770–773

    Google Scholar 

  • Uno H, Johnson CL, Anderson BJ, Korth H, Solomon SC (2009) Modeling Mercury’s internal magnetic field with smooth inversions. Earth Planet Sci Lett 285:328–339

    Google Scholar 

  • Velicogna I, Wahr J (2006) Acceleration of Greenland ice mass loss in spring 2004. Nature 443:329–331

    Google Scholar 

  • Vočadlo I, Alfè D, Price GD, Gillan MJ (2000) First principles calculation of the diffusivity of FeS at experimentally accessible conditions. Phys Earth Planet Inter 120:145–152

    Google Scholar 

  • Wahr J, de Vries D (1989) The possibility of lateral structure inside the core and its implications for nutation and Earth tide observations. Geophys J Int 99:511–519

    Google Scholar 

  • Wahr J, Swenson S, Velicogna I (2006) Accuracy of GRACE mass estimates. Geophys Res Lett 33:L06401. https://doi.org/10.1029/2005GL025305

    Article  Google Scholar 

  • Wicht J, Christensen UR (2010) Torsional oscillations in dynamo simulations. Geophys J Int 181:1367–1380

    Google Scholar 

  • Yoshida S, Sumita I, Kumazawa M (1996) Growth model of the inner core coupled with outer core dynamics and the resulting elastic anisotropy. J Geophys Res 101:28085–28103

    Google Scholar 

  • Yoshino T (2010) Laboratory electrical conductivity measurement of mantle minerals. Surv Geophys 31:163–206. https://doi.org/10.1007/s10712-009-9084-0

    Article  Google Scholar 

Download references

Acknowledgments

We thank Richard Gross, Richard Holme, and Andrew Jackson for sharing their insights and their data. We are also grateful to Bruce Buffett and the referee (Mathieu Dumberry) for giving helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul H. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Roberts, P.H., Aurnou, J.M. (2020). Core-Mantle Coupling. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics