Skip to main content

Borehole Seismic Networks and Arrays

  • Living reference work entry
  • First Online:
  • 99 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Borehole strings and chains; Buried grids; Downhole networks and arrays; Vertical arrays; VSP

Definition

In the broadest sense, borehole networks and arrays are assemblies of geophysical instruments placed in the subsurface via boreholes. This article focuses on their seismological applications. While common usage often blurs the distinction between a network and an array, this article explicitly distinguishes between their operational theories and engineering practices, and in the case histories and examples provided. To strictly qualify as an array, the assembly of instruments must include matching or similar sensors located at different depths in one well or lateral separated in different wells. The combined natural-frequency responses and spacing of the sensors must also include a range over which they can be used to improve signal detection and analysis via time series processing. Outside of this range a borehole assembly acts as a network of independent detectors.

Introduction...

This is a preview of subscription content, log in via an institution.

Bibliography

  • Balch AH, Lee MW (1984) Vertical seismic profiling: technique, applications, and case histories. International Human Resources Development Corporation/Reidel, Boston/Dordrecht/Lancaster

    Google Scholar 

  • Balch AH, Lee MW, Paillet FL (1986) Vertical seismic profiling – technique, application, and case histories. J Acoust Soc Am 80(3). https://doi.org/10.1121/1.393897

  • Bent A (2013) Global seismograph network (GSN). In: Bobrowsky PT (ed) Encyclopedia of natural hazards. Encyclopedia of earth sciences series. Springer, Dordrecht

    Google Scholar 

  • Ben-Zion Y, Malin PE (1991) San Andreas Fault zone head waves near Parkfield, California. Science 251:1592–1594

    Article  Google Scholar 

  • Blakeslee SN, Malin PE (1990) A comparison of earthquake coda waves at surface versus subsurface seismometers. J Geophys Res Solid Earth 95:309–326. https://doi.org/10.1029/JB095iB01p00309

    Article  Google Scholar 

  • Bohnhoff M, Zoback MD (2010) Oscillation of fluid-filled cracks triggered by degassing of CO2 due to leakage along wellbores. J Geophys Res 115:B11305. https://doi.org/10.1029/2010JB000848

    Article  Google Scholar 

  • Bohnhoff M, Zoback MD, Chiaramonte L, Gerst JL, Gupta N (2010) Seismic detection of CO2 leakage along monitoring wellbores. Int J Greenhouse Gas Control 4(4):687–697. https://doi.org/10.1016/j.ijggc.2010.01.009

    Article  Google Scholar 

  • Bohnhoff M, Dresen G, Ceken U, Kadirioglu FT, Karal RF, Kilic T, Nurlu M, Yanik K, Acarel D, Bulut F, Ito H, Johnson W, Malin PE, Mencin D (2017) GONAF – a borehole geophysical observatory around the north Anatolian fault in the eastern Sea of Marmara. Sci Drill 22:19–28

    Article  Google Scholar 

  • Bohnhoff M, Malin P, ter Heege J, Deflandre J-P, Sicking C (2018) Suggested best practice for seismic monitoring and characterization of non-conventional reservoirs. First Break 36:59–64

    Google Scholar 

  • Chavarria JA, Malin PE, Shalev E, Catchings RD (2003) A look inside the San Andreas Fault at Parkfield through vertical seismic profiling. Science 302:1746–1748

    Article  Google Scholar 

  • Coates R, Haldorsen JBU, Miller D, Malin P, Shalev E, Taylor ST, Stolte C, Verliac M (2006) Oilfield technologies for earthquake science. Oilfield Rev 18(2):24–33

    Google Scholar 

  • Eisner L, Hulsey BJ, Duncan P, Jurick D, Werner H, Keller W (2010) Comparison of surface and borehole locations of induced seismicity. Geophys Prospect 58(5):809–820. https://doi.org/10.1111/j.1365-2478.2010.00867.x

    Article  Google Scholar 

  • Ellsworth WL, Malin PE (2011) Deep rock damage in the San Andreas Fault revealed by P- and S-type fault-zone-guided waves. Geol Soc London Spec Publ 359:39–53. https://doi.org/10.1144/SP359.3

    Article  Google Scholar 

  • Galperin YI (1961) Three component downhole seismic acquisition. Moscow (in Russian)

    Google Scholar 

  • Galperin EI, Nersesov IL, Galperina RM (1986) Seismological observations in boreholes. In: Borehole seismology and the study of the seismic regime of large industrial centres. Seismology and exploration geophysics, vol 2. Springer, Dordrecht

    Chapter  Google Scholar 

  • Gardner LW (1949) Seismograph determination of a salt dome boundary using a well detector deep on the dome flank. Geophysics 14:29–38

    Article  Google Scholar 

  • Hamada K, Ohtake M, Okada Y, Matsumura S, Sato H (1985) A high-quality digital network for microearthquake and ground tilt observations in the Kanto-Tokai area, Japan. Earthquake Pred Res 3:447–469

    Google Scholar 

  • Haring MO, Schanz U, Ladner F, Dyer BC (2008) Characterization of the Basel 1 enhanced geothermal system. Geothermics 37:469–495

    Article  Google Scholar 

  • High-Resolution Seismic Network (HRSN) (2014) High resolution seismic network. UC Berkeley Seismological Laboratory, Berkley. https://doi.org/10.7932/HRSN

    Book  Google Scholar 

  • Huang W-G, Huang B-S, Wang I-H, Chen K-C, Wen K-L, Tsao S, Hsieh Y-C, Chen C-H (2010) Seismic observations in the Taipei Metropolitan Area using the downhole network. Terr Atmos Ocean Sci 21(3). https://doi.org/10.3319/TAO.2009.12.11.03(TH)

  • Ikelle LT, Amundsen L (2018) Introduction to petroleum seismology. Society of Exploration Geophysicists, Tulsa. https://doi.org/10.1190/1.9781560801702.ch5

    Book  Google Scholar 

  • Johnson HM (1962) A history of well logging. Geophysics 27(4):427–541. ISSN: 0016-8033; 1942-2156. https://doi.org/10.1190/1.1439054

    Article  Google Scholar 

  • Kwiatek G, Saarno T, Ader T, Bluemle F, Bohnhoff M, Chendorain M, Dresen G, Heikkinen P, Kukkonen I, Leary P, Leonhardt M, Malin P, Martínez-Garzón P, Passmore K, Passmore P, Valenzuela S, Wollin C (2019) Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Sci Adv 5(5):eaav7224. https://doi.org/10.1126/sciadv.aav7224

    Article  Google Scholar 

  • Lellouch A, Yuan S, Spica Z, Biondi B, Ellsworth WL (2019) Seismic velocity estimation using passive downhole distributed acoustic sensing records – examples from the San Andreas Fault Observatory at Depth. J Geophys Res Solid Earth. https://doi.org/10.1029/2019JB017533

  • Li Y-G, Malin PE (2008) San Andreas Fault damage at SAFOD viewed with fault-guided waves. Geophys Res Lett 35:L08304. https://doi.org/10.1029/2007GL032924

    Article  Google Scholar 

  • Liang C, O’Reilly O, Dunham EM, Moos D (2017) Hydraulic fracture diagnostics from Krauklis-wave resonance and tube-wave reflections. Geophysics 82(3):D171–D186

    Article  Google Scholar 

  • Luo Y, Xia J, Miller RD et al (2008) Rayleigh-wave dispersive energy imaging by high resolution linear radon transform. Pure Appl Geophys 165(5):903–922

    Article  Google Scholar 

  • Malin PE, Bohnhoff M, Blumle F, Dresen G, Martinez-Garzon P, Nurlu M, Ceken U, Kadirioglu FT, Kartal RF, Kilic T, Yanik K (2018) Microearthquakes preceding a M4.2 Earthquake Offshore Istanbul. Sci Rep 8:Article number: 16176. https://doi.org/10.1038/s41598-018-34563-9

    Article  Google Scholar 

  • Martinez-Garzon P, Bohnhoff M, Zambrano-Narvaez G, Chalaturnyk R (2013) Microseismic monitoring of CO2 injection at the Penn West Pembina Cardium EOR Project, Canada. Sensors 13:11522–11538. https://doi.org/10.3390/s130911522

    Article  Google Scholar 

  • Marzetta T, Orton M, Krampe A, Johnston L, Wuenschel P (1988) A hydrophone vertical seismic profiling experiment. Geophysics 53(11):1437–1444. https://doi.org/10.1190/1.1442423

    Article  Google Scholar 

  • McClellan JH, Eisner L, Liu E, Iqbal N, Al-Shuhail AA, Kaka SI (2018) Array processing in microseismic monitoring detection, enhancement, and localization of induced seismicity. IEEE Signal Process Mag. https://doi.org/10.1109/MSP.2017.2776798

  • McCollum B, LaRue WW (1931) Utilization of existing wells in seismograph work. Bull Am Assoc Pet Geol 15:1409–1417

    Google Scholar 

  • Musgrave AW, Woolley WC, Gray H (1960) Outlining of salt masses by refraction methods. Geophysics 25:141–167

    Article  Google Scholar 

  • Obara K (2003) Hi-Net: high sensitivity seismograph network, Japan. In: Methods and applications of signal processing in seismic network operations. Lecture notes in earth sciences, vol 98. Springer, Berlin

    Google Scholar 

  • Oye V, Chavarria J-A, Malin P (2004) Determining SAFOD area microearthquake locations solely with the Pilot Hole seismic array data. Geophys Res Lett 31:L12S10. https://doi.org/10.1029/2003GL019403

    Article  Google Scholar 

  • Prevedel B, Bulut F, Bohnhoff M, Raub C, Kartal R, Fatih Alver F, Malin PE (2015) Downhole geophysical observatories: best installation practices and a case history from Turkey. Int J Earth Sci 104:1537. https://doi.org/10.1007/s00531-015-1147-5

    Article  Google Scholar 

  • Raub C, Bohnhoff M, Petrovic B, Parolai S, Malin PE, Yanik K, Kartal RF, Kiliç T (2016) Seismic wave propagation in shallow layers at the GONAF-Tuzla site, Istanbul, Turkey. Bull Seismol Soc Am 106:912–927. https://doi.org/10.1785/0120150216

    Article  Google Scholar 

  • Richards PG (2016) The history and outlook for seismic monitoring of nuclear explosions in the context of the Comprehensive Nuclear-Test-Ban Treaty. Nonprolif Rev. https://doi.org/10.1080/10736700.2016.1272207

  • Sicking CJ, Malin PE (2019) Fracture seismic: mapping subsurface connectivity. Geosciences 2019(9):508

    Article  Google Scholar 

  • Sicking CJ, Vermilye J (2019) Resonance frequencies in passive recordings map fracture systems: Eagle Ford and New Albany Shale examples. Extended abstract, unconventional resources technology conference (URTeC). https://doi.org/10.15530/urtec-347

  • Takahashi H (1982) The deep borehole observatories and their contribution for revealing the characteristics of microearthquake activity in the Kanto district. Rep Natl Res Cent Disaster Prev 28:1–104. (in Japanese with English abstract)

    Google Scholar 

  • Tary JB, Van der Baan M, Eaton DW (2014a) Interpretation of resonance frequencies recorded during hydraulic fracturing treatments. J Geophys Res Solid Earth 119(2):1295–1315

    Article  Google Scholar 

  • Tary JB, Van der Baan M, Sutherland B, Eaton DW (2014b) Characteristics of fluid induced resonances observed during microseismic monitoring. J Geophys Res 119:8207–8222

    Article  Google Scholar 

  • Thurber C, Roecker S, Roberts K, Gold M, Powell L, Rittger K (2003) Earthquake locations and three-dimensional fault zone structure along the creeping section of the San Andreas Fault near Parkfield, CA: preparing for SAFOD. Geophys Res Lett 30(3):1112. https://doi.org/10.1029/2002GL016004

    Article  Google Scholar 

  • Thurber C, Roecker S, Zhang H, Baher S, Ellsworth W (2004) Fine-scale structure of the San Andreas Fault zone and location of the SAFOD target earthquakes. Geophys Res Lett 31(12):L12S02. https://doi.org/10.1029/2003GL019398

    Article  Google Scholar 

  • Toksöz MN, Cheng CH, Cicerone RD (1992) Fracture detection and characterization from hydrophone vertical seismic profiling data. Int Geophys Ser 51:389–414. https://doi.org/10.1016/S0074-6142(08)62831-4

    Article  Google Scholar 

  • Unsworth MJ, Malin PE, Egbert GD, Booker JR (1997) Internal structure of the San Andreas Fault at Parkfield, California. Geology 25:359–362

    Article  Google Scholar 

  • Vasconcelos I, Sneider R, Sava P, Taylor T, Malin P, Chavarria A (2008) Drill bit noise illuminates the San Andreas Fault. EOS Trans Am Geophys Union 89(38):349–360

    Google Scholar 

  • Zhang H, Thurber C, Bedrosian P (2009) Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California. Geochem Geophys Geosyst 10:Q11002. https://doi.org/10.1029/2009GC002709

    Article  Google Scholar 

  • Zoback M, Hickman S, Ellsworth W, the SAFOD Science Team (2011) Scientific drilling into the San Andreas Fault zone – an overview of SAFOD’s first five years. Sci Drill 11:14–28. https://doi.org/10.2204/iodp.sd.11.02.2011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bohnhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bohnhoff, M., Malin, P. (2020). Borehole Seismic Networks and Arrays. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_268-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_268-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics