Skip to main content

Earthquakes: Location Techniques

Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Hypocenter determination

Definitions

Earthquake location. Methods for determining the latitude, longitude, depth, and time of origin of a seismic event (earthquake, explosion, etc.) using the arrival times of seismic waves.

Introduction

Knowing the location of an earthquake (its latitude, longitude, depth, and origin time) is an essential starting point for the vast majority of quantitative seismological analyses. In the context of this entry, earthquake location will be taken to mean determining the initiation point of fault rupture, i.e., the hypocenter. After briefly tracing some of the early history of methods for the quantitative determination of earthquake locations, the focus of discussion turns to modern methods for single-event location and uncertainty estimation. The final section covers multiple-event location, with an emphasis on the substantial to – in some cases – profound improvement in relative location accuracy that can be achieved by combining waveform...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Allen RV (1978) Automatic earthquake recognition and timing from single traces. Bull Seismol Soc Am 68:1521

    Google Scholar 

  • Allen RV (1982) Automatic phase pickers: their present use and future prospects. Bull Seismol Soc Am 72:S225

    Google Scholar 

  • Anderson BE, Griffa M, Larmat C, Ulrich TJ, Johnson PA (2008) Time reversal. Acoust Today 4:5

    Article  Google Scholar 

  • Artman B, Podladtchikov I, Witten B (2010) Source location using time-reverse imaging. Geophys Prospect 58:861

    Article  Google Scholar 

  • Aster R, Borchers B, Thurber C (2019) Parameter estimation and inverse problems, 3rd edn. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Battaglia J, Thurber C, Got J-L, Rowe C, White R (2004) Precise relocation of earthquakes following the June 15, 1991 explosion of mount Pinatubo (Philippines). J Geophys Res 109:B07302

    Article  Google Scholar 

  • Bergman EA, Engdahl ER (2001) Validation and generation of reference events by cluster analysis. Seism Res Lett 72:3

    Article  Google Scholar 

  • Billings SD (1994) Simulated annealing for earthquake location. Geophys J Int 118:680

    Article  Google Scholar 

  • Billings SD, Sambridge MS, Kennett BLN (1994) Errors in hypocenter location: picking, model, and magnitude dependence. Bull Seismol Soc Am 84:1978

    Google Scholar 

  • Bolt BA (1960) The revision of earthquake epicentres, focal depths and origin times using a high-speed computer. Geophys J R Astron Soc 3:433

    Article  Google Scholar 

  • Bolt BA (2006) Earthquakes. W.H. Freeman, New York

    Google Scholar 

  • Bondár I, McLaughlin K (2009) A new ground truth data set for seismic studies. Seismol Res Lett 80:465

    Article  Google Scholar 

  • Bratt SR, Bache TC (1988) Locating events with a sparse network of regional arrays. Bull Seismol Soc Am 78:780–798

    Google Scholar 

  • Buland R (1976) The mechanics of locating earthquakes. Bull Seismol Soc Am 66:173

    Google Scholar 

  • Buland R (1986) Uniform reduction error analysis. Bull Seismol Soc Am 76:217

    Google Scholar 

  • Chang AC, Shumway RH, Blandford RR, Barker BW (1983) Two methods to improve location estimates – preliminary results. Bull Seismol Soc Am 73:281

    Google Scholar 

  • Cichowicz A (1993) An automatic S-phase picker. Bull Seismol Soc Am 83:180

    Google Scholar 

  • Deichmann N, Garcia-Fernandez M (1992) Rupture geometry from high precision relative hypocentre locations of microearthquake clusters. Geophys J Int 110:501–517

    Article  Google Scholar 

  • Diehl T, Deichmann N, Kissling E, Husen S (2009) Automatic S-wave picker for local earthquake tomography. Bull Seismol Soc Am 99:1906

    Article  Google Scholar 

  • Dodge DA, Beroza GC, Ellsworth WL (1995) Foreshock sequence of the 1992 landers, California, earthquake and its implications for earthquake nucleation. J Geophys Res 100:9865

    Article  Google Scholar 

  • Douglas A (1967) Joint epicenter determination. Nature 215:47

    Article  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Du W, Thurber CH, Eberhart-Phillips D (2004a) Earthquake relocation using cross-correlation time delay estimates verified with the bispectrum method. Bull Seismol Soc Am 94:856

    Article  Google Scholar 

  • Du W, Thurber CH, Reyners M, Eberhart-Phillips D, Zhang H (2004b) New constraints on seismicity in the Wellington region, New Zealand, from relocated earthquake hypocenters. Geophys J Int 158:1088

    Article  Google Scholar 

  • Earle P, Shearer PM (1994) Characterization of global seismograms using an automatic-picking algorithm. Bull Seismol Soc Am 84:366

    Google Scholar 

  • Engdahl ER (2006) Application of an improved algorithm to high precision relocation of ISC test events. Phys Earth Planet Inter 158:14

    Article  Google Scholar 

  • Engdahl ER, van der Hilst R, Buland R (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull Seismol Soc Am 88:722

    Google Scholar 

  • Evernden JF (1969) Precision of epicenters obtained by small numbers of world-wide stations. Bull Seismol Soc Am 59:1365

    Google Scholar 

  • Flinn EA (1965) Confidence regions and error determinations for seismic event location. Rev Geophys 3:157

    Article  Google Scholar 

  • Font Y, Honn K, Lallemand S, Liu C, Chiao L (2004) Hypocentre determination offshore of eastern Taiwan using the maximum intersection method. Geophys J Int 158:655

    Article  Google Scholar 

  • Fremont M-J, Malone SD (1987) High-precision relative location of earthquakes at Mount St. Helens, Washington. J Geophys Res 92:10223

    Article  Google Scholar 

  • Geiger L (1910) Herdbestimmung bei erdbeden ans den ankunftzeiten. Königlichen Gesellschaft der Wissenschaften zu Göttingen 4:331

    Google Scholar 

  • Geiger L (1912) Probability method for the determination of earthquake epicenters from the arrival time only. Bull St Louis Univ 8:60

    Google Scholar 

  • Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic, New York

    Google Scholar 

  • Gomberg JS, Shedlock KM, Roecker SW (1990) The effect of S-wave arrival times on the accuracy of hypocenter estimation. Bull Seismol Soc Am 80:1605

    Google Scholar 

  • Got J-L, Frechet J, Klein F (1994) Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. J Geophys Res 99:15375

    Article  Google Scholar 

  • Husen S, Hardebeck JL (2010) Earthquake location accuracy. Community Online Res Stat Seismicity Anal. https://doi.org/10.5078/corssa-55815573

  • Jeffreys H (1939) Theory of probability. Oxford University Press, London

    Google Scholar 

  • Jordan TH, Sverdrup KA (1981) Teleseismic location techniques and their application to earthquake clusters in the south-Central Pacific. Bull Seismol Soc Am 71:1105

    Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the earth from travel times. Geophys J Int 122:108

    Article  Google Scholar 

  • Klein FW (1978) Hypocenter location program HYPOINVERSE. U.S. Geological Survey Open-File Report 78–694, p 113

    Google Scholar 

  • Larmat C, Clay CS (2019) Time reversal methods. Springer, Encyclopedia of Solid Earth Geophysics

    Google Scholar 

  • Leonard M (2000) Comparison of manual and automatic onset time picking. Bull Seismol Soc Am 90:1384

    Article  Google Scholar 

  • Leonard M, Kennett BLN (1999) Multi-component autoregressive techniques for the analysis of seismograms. Phys Earth Planet Inter 113:247

    Article  Google Scholar 

  • Lomax A, Virieux J, Volant P, Berge C (2000) Probabilistic earthquake location in 3D and layered models: introduction of a Metropolis-Gibbs method and comparison with linear locations. In: Thurber CH, Rabinowitz N (eds) Advances in seismic event location. Kluwer, Amsterdam, pp 101–134

    Chapter  Google Scholar 

  • Maeda N (1985) A method for reading and checking phase times in autoprocessing system of seismic wave data. Zisin Jishin 38:365

    Article  Google Scholar 

  • McMechan GA (1982) Determination of source parameters by wavefield extrapolation. Geophys J R Astron Soc 71:613

    Article  Google Scholar 

  • Milne J (1886) Earthquakes and other earth movements. Appleton, New York

    Google Scholar 

  • Myers SC, Johannesson G, Hanley W (2007) A Bayesian hierarchical method for multiple-event seismic location. Geophys J Int 171:1049

    Article  Google Scholar 

  • Parvulescu A, Clay CS (1965) Reproducibility of signal transmission in the ocean. Radio Electron Eng 29:223

    Article  Google Scholar 

  • Pavlis GL (1986) Appraising earthquake hypocenter location errors: a complete, practical approach for single event locations. Bull Seismol Soc Am 76:1699

    Google Scholar 

  • Pavlis GL (1992) Appraising relative earthquake location errors. Bull Seismol Soc Am 82:836

    Google Scholar 

  • Pesicek JD, Thurber CH, Zhang H, DeShon HR, Engdahl ER, Widiyantoro S (2010) Teleseismic double-difference relocation of earthquakes along the Sumatra-Andaman subduction zone with a three-dimensional model using a 3-D model. J Geophys Res 115:B10303. https://doi.org/10.1029/2010JB007443

    Article  Google Scholar 

  • Pesicek JD, Child D, Artman B, CieÅ›lik K (2014) Picking versus stacking in a modern microearthquake location: comparison of results from a surface passive seismic monitoring array in Oklahoma. Geophysics 79:KS61–KS68

    Article  Google Scholar 

  • Phillips WS, Hartse HE, Steck LK (2001) Precise relative location of 25 ton chemical explosions at Balapan using IMS stations. Pure Appl Geophys 158:173

    Article  Google Scholar 

  • Poupinet G, Ellsworth WL, Fréchet J (1984) Monitoring velocity variations in the crust using earthquake doublets: an application to the Calaveras fault, California. J Geophys Res 89:5719

    Article  Google Scholar 

  • Pujol J (2000) Joint event location: the JHD technique and applications to data from local seismic networks. In: Advances in seismic event location. Kluwer Academic Publishers, Dordrecht, pp 71–99

    Google Scholar 

  • Rabinowitz N (1988) Microearthquake location by means of nonlinear simplex procedure. Bull Seismol Soc Am 78:380

    Google Scholar 

  • Rodi WL (2006) Grid-search event location with non-Gaussian error models. Phys Earth Planet Inter 158:55

    Article  Google Scholar 

  • Rodi WL, Myers SC (2007) Modeling travel-time correlations based on sensitivity kernels and correlated velocity anomalies. In: Proceedings of the 29th monitoring research review: ground-based nuclear explosion monitoring technologies, Denver, 25–27 Sept

    Google Scholar 

  • Rowe CA, Aster RC, Borchers B, Young CJ (2002a) An automatic, adaptive algorithm for refining phase picks in large seismic data sets. Bull Seismol Soc Am 92:1660

    Article  Google Scholar 

  • Rowe CA, Aster RC, Phillips WS, Jones RH, Borchers B, Fehler MC (2002b) Using automated, high-precision repicking to improve delineation of microseismic structures at the Soultz geothermal reservoir. Pure Appl Geophys 159:536

    Article  Google Scholar 

  • Rowe CA, Thurber CH, White RA (2004) Dome growth behavior at Soufriere Hills volcano, Montserrat, revealed by relocation of volcanic event swarms, 1995–1996. J Volcanol Geotherm Res 134:199

    Article  Google Scholar 

  • Rowlett H, Forsyth DW (1984) Microearthquakes and recent faulting at the intersection of the Vema fracture zone and the mid-Atlantic ridge. J Geophys Res 89:6079

    Article  Google Scholar 

  • Rubin AM, Gillard D, Got J-L (1998) A reinterpretation of seismicity associated with the January 1983 dike intrusion at Kilauea volcano, Hawaii. J Geophys Res 103:10003

    Article  Google Scholar 

  • Rubin AM, Gillard D, Got J (1999) Streaks of microearthquakes along creeping faults. Nature 400:635

    Article  Google Scholar 

  • Ruud BO, Husebye ES (1992) A new three-component detector and automatic single station bulletin production. Bull Seismol Soc Am 82:221

    Google Scholar 

  • Sambridge M, Gallagher K (1993) Earthquake hypocenter location using genetic algorithms. Bull Seismol Soc Am 83:1467

    Google Scholar 

  • Sambridge MS, Kennett BLN (1986) A novel method for hypocentre location. Geophys J R Astron Soc 87:679

    Article  Google Scholar 

  • Satriano C, Lomax A, Zollo A (2008) Real-time evolutionary earthquake location for seismic early warning. Bull Seismol Soc Am 98:1482

    Article  Google Scholar 

  • Schaff DP, Richards PG (2004) Repeating seismic events in China. Science 303:1176

    Article  Google Scholar 

  • Schaff DP, Bokelmann GHR, Beroza GC, Waldhauser F, Ellsworth WL (2002) High-resolution image of Calaveras fault seismicity. J Geophys Res 107:2186

    Article  Google Scholar 

  • Schöffel H-J, Das S (1999) Fine details of the Wadati-Benioff zone under Indonesia and its geodynamic implications. J Geophys Res 104:13101

    Article  Google Scholar 

  • Shearer PM (1997) Improving local earthquake locations using the L1 norm and waveform cross correlation: application to the Whittier narrows, California, aftershock sequence. J Geophys Res 102:8269

    Article  Google Scholar 

  • Sleeman R, van Eck T (1999) Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings. Phys Earth Planet Inter 113:265

    Article  Google Scholar 

  • Slunga R, Rögnvaldsson ST, Böðvarsson R (1995) Absolute and relative locations of similar events with application to microearthquakes in southern Iceland. Geophys J Int 123:409

    Article  Google Scholar 

  • Sumiejski L, Thurber C, DeShon H (2009) Relocation of earthquake families associated with the 2006 eruption of Augustine volcano using the equal differential time method. Geophys J Int 176:1017

    Article  Google Scholar 

  • Thurber CH (1985) Nonlinear earthquake location: theory and examples. Bull Seismol Soc Am 75:779

    Google Scholar 

  • Thurber CH, Engdahl ER (2000) Advances in global seismic event location. In: Thurber C, Rabinowitz N (eds) Advances in seismic event location. Kluwer Academic Publishers, Dordrecht, pp 3–22

    Chapter  Google Scholar 

  • Thurber C, Trabant C, Haslinger F, Hartog R (2001) Nuclear explosion locations at the Balapan, Kazakhstan, nuclear test site: the effects of high-precision arrival times and three-dimensional structure. Phys Earth Planet Inter 123:283

    Article  Google Scholar 

  • Thurber C, Roecker S, Zhang H, Baher S, Ellsworth W (2004) Fine-scale structure of the San Andreas fault and location of the SAFOD target earthquakes. Geophys Res Lett 31:L12S02

    Article  Google Scholar 

  • Vidale JE (1986) Complex polarization analysis of particle motion. Bull Seismol Soc Am 76:1393–1405

    Google Scholar 

  • Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull Seismol Soc Am 90:1353

    Article  Google Scholar 

  • Waldhauser F, Schaff DP (2008) Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods. J Geophys Res 113:B08311

    Article  Google Scholar 

  • Waldhauser F, Ellsworth WL, Cole A (1999) Slip-parallel seismic lineations on the Hayward fault and the San Andreas fault near Parkfield, California. Geophys Res Lett 70:246

    Google Scholar 

  • Wang J, Teng T (1997) Identification and picking of S phase using an artificial neural network. Bull Seismol Soc Am 87:1140

    Google Scholar 

  • Wilcock WS, Toomey DR (1991) Estimating hypocentral uncertainties for marine microearthquake surveys: a comparison of the generalized inverse and grid search methods. Mar Geophys Res 13:161

    Google Scholar 

  • Wolfe CJ (2002) On the mathematics of using difference operators to relocate earthquakes. Bull Seismol Soc Am 92:2879

    Article  Google Scholar 

  • Zhang H, Thurber C, Rowe C (2003) Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings. Bull Seismol Soc Am 93:1904

    Article  Google Scholar 

  • Zhou H-W (1994) Rapid three-dimensional hypocentral determination using a master station method. J Geophys Res 99:15439

    Article  Google Scholar 

  • Zoback MD, Hickman S, Ellsworth WL (2011) Scientific drilling into the San Andreas fault zone – an overview of SAFOD’s first five years. Sci Drill 11:14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford H. Thurber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Thurber, C.H. (2019). Earthquakes: Location Techniques. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Earthquakes, Location Techniques
    Published:
    08 September 2020

    DOI: https://doi.org/10.1007/978-3-030-10475-7_25-2

  2. Original

    Earthquakes: Location Techniques
    Published:
    24 January 2020

    DOI: https://doi.org/10.1007/978-3-030-10475-7_25-1