Skip to main content

Earthquakes and Crustal Deformation

  • Living reference work entry
  • First Online:
Encyclopedia of Solid Earth Geophysics

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 87 Accesses

Definition

The term earthquake is commonly used only to describe sudden slip on a fault within the Earth that produces seismic waves in the frequency bands that we can either feel or observe with seismometers. However, other sources that produce deformation of the Earth’s surface do not generate seismic waves but are instead observable with sensitive geodetic instruments that measure the crustal deformation directly. Because of the great advances over the past few decades in observing and understanding them, in this chapter we broaden the definition of earthquake to include these “quiet” sources of Earth deformation. Other chapters deal with some of these sources in more detail.

With this enhanced definition, earthquakes encompass a wide range of phenomena. The most common type we often think of is rapid slip within the Earth. The motion across a fault is typically of a shearing type but seismic disturbances can include volumetric or planar expansion in some settings, most notably near...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Barbot S, Fialko Y, Bock Y (2009) Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: stress-driven creep on a fault with spatially variable rate-and-state friction parameters. J Geophys Res 114:B07405. https://doi.org/10.1029/2008JB005748

    Article  Google Scholar 

  • Doser DI, Webb TH (2003) Source parameters of large historical (1917–1961) earthquakes, North Island, New Zealand. Geophys J Int 152:795–832

    Article  Google Scholar 

  • Dragert H, Wang K, James TS (2001) A silent slip event on the deeper Cascadia subduction interface. Science 292:1525–1528

    Article  Google Scholar 

  • England P, McKenzie D (1982) A thin viscous sheet model for continental deformation. Geophys J R Astron Soc 70:295–321

    Article  Google Scholar 

  • Funning GJ, Parsons B, Wright TJ, Jackson JA, Fielding EJ (2005) Surface displacements and source parameters of the 2003 Bam (Iran) earthquake from Envisat advanced synthetic aperture radar imagery. J Geophys Res 110:B09406. https://doi.org/10.1029/2004JB003338.

    Article  Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Haugerud RA, Harding DJ, Johnson SY, Harless JL, Weaver CS, Sherrod BL (2003) High-resolution Lidar topography of the Puget Lowland. Washington. GSA Today 13:4–10

    Article  Google Scholar 

  • Heki K, Miyazaki S, Tsuji H (1997) Silent fault slip following an interplate thrust earthquake at the Japan Trench. Nature 386:595–598

    Article  Google Scholar 

  • Ide S, Beroza GC, Shelly DR, Uchide T (2007) A scaling law for slow earthquakes. Nature 447:76–79. https://doi.org/10.1038/nature05780

    Article  Google Scholar 

  • Johanson IA, Fielding EJ, Rolandone F, Bürgmann R (2006) Coseismic and postseismic slip of the 2004 Parkfield earthquake from space-geodetic data. Bull Seismol Soc Am 96(4b):S269–S282

    Article  Google Scholar 

  • Jones CH, Unruh JR, Sonder LJ (1996) The role of gravitational potential energy in active deformation in the southwestern US. Nature 381:37–41

    Article  Google Scholar 

  • Kanamori H, Kikuchi M (1993) The 1992 Nicaragua earthquake – a slow tsunami earthquake associated with subducted sediments. Nature 361:714–716

    Article  Google Scholar 

  • Larson KM, Kostoglodov V, Miyazaki S, Santiago JAS (2007) The 2006 aseismic slow slip event in Guerrero, Mexico: new results from GPS. Geophys Res Lett 34:L13309. https://doi.org/10.1029/2007GL029912.

    Article  Google Scholar 

  • Linde AT, Gladwin MT, Johnston MJS, Gwyther RL (1996) A slow earthquake sequence on the San Andreas fault. Nature 383:65–68

    Article  Google Scholar 

  • Manaker DM, Calais E, Freed AM, Ali ST, Przybylski P, Mattioli G, Jansma P, Prepetit C, de Chabalier JB (2008) Interseismic Plate coupling and strain partitioning in the Northeastern Caribbean. Geophys J Int 174:889–903. https://doi.org/10.1111/j.1365-246X.2008.03819.x

    Article  Google Scholar 

  • Matsu’ura M, Jackson DD, Cheng A (1986) Dislocation model for aseismic crustal deformation at Hollister, California. J Geophys Res 91:12661–12674

    Article  Google Scholar 

  • McCaffrey R (2002) Crustal block rotations and plate coupling. In: Stein S, Freymueller J (eds) Plate boundary zones. AGU geodynamics series, vol 30. American Geophysical Union, Washington, DC, pp 101–122

    Google Scholar 

  • McCaffrey R, Qamar AI, King RW, Wells R, Ning Z, Williams CA, Stevens CW, Vollick JJ, Zwick PC (2007) Plate locking, block rotation and crustal deformation in the Pacific Northwest. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2007.03371.x

    Article  Google Scholar 

  • McCaffrey R, Wallace LM, Beavan J (2008) Slow slip and frictional transition at low temperature at the Hikurangi subduction zone. Nat Geosci 1:316–320

    Article  Google Scholar 

  • Mogi K (1985) Earthquake prediction. Academic, Tokyo

    Google Scholar 

  • Obara K (2002) Nonvolcanic deep tremor associated with subduction in southwest Japan. Science 296:1679. https://doi.org/10.1126/science.1070378

    Article  Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040

    Google Scholar 

  • Reid HF (1910) The mechanics of the earthquake, The California earthquake of April 18, 1906, Report of the state investigation commission, vol 2. Carnegie Institution of Washington, Washington, DC

    Google Scholar 

  • Rogers G, Dragert H (2003) Episodic tremor and slip on the cascadia subduction zone: the chatter of silent slip. Sciencexpress. https://doi.org/10.1126/science.1084783

    Article  Google Scholar 

  • Rubenstein JL, Shelley DR, Ellsworth WL (2010) Nonvolcanic tremor: a window into the roots of fault zones. In: Cloetingh S, Negendank J (eds) New frontiers in integrated solid earth sciences. International Year of Planet Earth. https://doi.org/10.1007/978-90-481-2737-5_8

    Chapter  Google Scholar 

  • Scholz C (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, Cambridge, p 471

    Book  Google Scholar 

  • Segall P (2010) Earthquake and volcano deformation. Princeton University Press, Princeton

    Book  Google Scholar 

  • Shelly DR, Beroza GC, Ide S, Nakamula S (2006) Low frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442:188–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert McCaffrey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McCaffrey, R. (2020). Earthquakes and Crustal Deformation. In: Gupta, H. (eds) Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-030-10475-7_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10475-7_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10475-7

  • Online ISBN: 978-3-030-10475-7

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics