Skip to main content

Therapeutic, Phytochemistry, and Pharmacology of Acorns (Quercus Nuts): A Review

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Fruits and Nuts

Abstract

The current global food system must adapt to the expected growth of world population. This adaptation will probably include an increased consumption of edible wild foods, due to their richness in micronutrients and bioactive compounds, besides providing a cost-effective and sustainable way of improving caloric food security. Acorns (Quercus nuts) have been presenting an important role on the rural economy. In fact, their nutritional value; high contents in bioactive compounds; biological activity such as antioxidant, anticarcinogenic, and cardioprotective properties; and use in the treatment of specific diseases such as atherosclerosis, diabetes, or Alzheimer’s disease have raised the interest in integrating acorns into the human diet. In the present review, we present the chemical constituents of acorns and their biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D (2017) Oaks and people: a long journey together. In: Gil-Pelegrín E, Peguero-Pina JJ, Sancho-Knapik D (eds) Oaks physiological ecology. Exploring the functional diversity of Genus Quercus L. Springer International Publishing, Cham, pp 1–11

    Chapter  Google Scholar 

  2. Wang X (2013) Indicating function of Shanxi Zhongtiaoshan mountain oak forests to forest restoration and reconstruction in North China. For Econ 8:74–76

    Google Scholar 

  3. Villar-Salvador P, Peñuelas JL, Nicolás-Peragón JL, Benito LF, Domínguez-Lerena S (2013) Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations? New For 44:733–775

    Article  Google Scholar 

  4. Knoot TG, Schulte LA, Rickenbach M (2010) Oak conservation and restoration on private forestlands: negotiating a social-ecological landscape. Environ Manag 45:155–164

    Article  Google Scholar 

  5. Tantray YR, Wani MS, Hussain A (2017) Genus Quercus: an overview. Int J Adv Res Sci Eng 6:1880–1886

    Google Scholar 

  6. Tejerina D, García-Torres S, Vaca MC, Vásquez FM, Cava R (2011) Acorns (Quercus rotundifolia Lam.) and grass as natural sources of antioxidants and fatty acids in the “montanera” feeding of Iberian pig: intra- and inter-annual variations. Food Chem 124:997–1004

    Article  CAS  Google Scholar 

  7. Shi W, Villar-Salvador P, Li G, Jiang X (2019) Acorn size is more important than nursery fertilization for outplanting performance of Quercus variabilis container seedlings. Ann For Sci 76:22–34

    Article  Google Scholar 

  8. Rosenberg D (2008) The possible use of acorns in past economies of the Southern Levant: a staple food or a negligible food source? Levant 40(2):167–175

    Article  Google Scholar 

  9. Silva A, Costa EM, Borges A, Carvalho AP, Monteiro MJ, Pintado MME (2016) Nutritional characterization of acorn flour (a traditional component of the Mediterranean gastronomical folklore). J Food Meas Charact 10:584–588

    Article  Google Scholar 

  10. Jacomet S (2009) Plant economy and village life in Neolithic lake dwellings at the time of the Alpine iceman. Veg Hist Archaeobotany 18:47–59

    Article  Google Scholar 

  11. Łuczaj Ł, Adamczak A, Duda M (2014) Tannin content in acorns (Quercus spp.) from Poland. Dendrobiology 72:103–111

    Article  Google Scholar 

  12. Rakić S, Petrović S, Kukić J, Jadranin M, Tešević V, Povrenović D, Šiler-Marinković S (2007) Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chem 104:830–834

    Article  CAS  Google Scholar 

  13. Pour MB, Bahmaninia E, Ebrahimi R, Fayazi J (2010) Evaluate effects of different inclusion of oak kernel with determine food potential oak kernel substitute with corn seed on broiler chicken’s ration. Res J Biol Sci 5:17–19

    Article  Google Scholar 

  14. Deforce K, Bastiaens J, Calster HV, Vanhoutte S (2009) Iron age acorns from Boezing (Belgium): the role of acorn consumption in prehistory. Archaol Korrespondenzbl 39:381–392

    Google Scholar 

  15. Vinha AF, Barreira JCM, Costa ASG, Oliveira MBPP (2016) A new age for Quercus spp. fruits: review on nutritional and phytochemical composition and related biological activities of acorns. Compr Rev Food Sci Food Saf 15:947–981

    Article  PubMed  Google Scholar 

  16. Bonito A, Varone L, Gratani L (2011) Relationship between acorn size and seedling morphological and physiological traits of Quercus ilex L. from different climates. Photosynthetica 49(1):75–86

    Article  Google Scholar 

  17. Galván JV, Novo JJJ, Cabrera AG, Ariza D, García-Olmo J, Cerrillo RMN (2012) Population variability based on the morphometry and chemical composition of the acorn in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.). Eur J For Res 131(4):893–904

    Article  CAS  Google Scholar 

  18. Clark SL, Schlarbaum SE (2018) Effects of acorn size and mass on seedling quality of northern red oak (Quercus rubra). New For 49:571–583

    Article  Google Scholar 

  19. González-Rodríquez V, Villar R, Navarro-Cerrillo RM (2011) Maternal influences on seed mass effect and initial seedling growth in four Quercus species. Acta Oecol 37:1–9

    Article  Google Scholar 

  20. Landergott U, Gugerli F, Hoebee SE, Finkeldey R, Holderegger R (2012) Effects of seed mass on seedling height and competition in European white oaks. Flora 207:721–772

    Article  Google Scholar 

  21. Yi X, Zhang J, Wang Z (2015) Large and small acorns contribute equally to early-stage oak seedlings: a multiple species study. Eur J For Res 134:1019–1026

    Article  Google Scholar 

  22. Spiertz H (2010) Food production, crops and sustainability: restoring confidence in science and technology. Curr Opin Environ Sustain 2:439–443

    Article  Google Scholar 

  23. Jamnadass RH, Dawson IK, Franzel S, Leakey RRB, Mithöfer D, Akinnifesi FK, Tchoundjeu Z (2011) Improving livelihoods and nutrition in sub-Saharan Africa through the promotion of indigenous and exotic fruit production in smallholders’ agroforestry systems: a review. Int For Rev 13:338–354

    Google Scholar 

  24. Powell B, Hall J, Johns T (2011) Forest cover, use and dietary intake in the East Usambara Mountains, Tanzania. Int For Rev 13:305–324

    Google Scholar 

  25. Mahfoudhi N, Ksouri R, Hamdi S (2016) Nanoemulsions as potential delivery systems for bioactive compounds in food systems: preparation, characterization, and applications in food industry. Emu 3:365–403

    Article  Google Scholar 

  26. Sun X, Kang H, Du H, Hu H, Zhou J, Hou J, Zhou X, Lui C (2012) Stoichiometric traits of oriental oak (Quercus variabilis) acorns and their variations in relation to environmental variables across temperate to subtropical China. Ecol Res 27:765–773

    Article  Google Scholar 

  27. Rababah T, Ereifej K, Al-Mahasneh M, Alhamad M, Alrababah M, Al-u’datt M (2008) The physicochemical composition of acorns for two Mediterranean Quercus species. J Agric Sci 4:131–137

    Google Scholar 

  28. Gea-Izquierdo G, Cañellas I, Montero G (2006) Acorn production in Spanish holm oak woodlands. For Syst 15:339–354

    Google Scholar 

  29. Correia RT, Borges KC, Medeiros MF, Genovese MI (2012) Bioactive compounds and phenolic-linked functionality of powdered tropical fruit residues. Food Sci Technol Int 18:539–547

    Article  PubMed  CAS  Google Scholar 

  30. Özcan T (2007) Characterization of Turkish Quercus L. taxa based on fatty acid compositions of the acorns. J Am Oil Chem Soc 84:653–662

    Article  CAS  Google Scholar 

  31. Afazal-Raffi Z, Dodd RS, Pelleau Y (1992) Mediterranean evergreen oak diversity: morphological and chemical variation of acorns. Can J Bot 70:1459–1466

    Article  Google Scholar 

  32. Aguilera JF, Nieto R, Rivera M, Garcia MA (2002) Amino acid availability and energy value of acorn in the Iberian pig. Livest Prod Sci 77:227–239

    Article  Google Scholar 

  33. Cantos E, Espín JC, López-Bote C, de la Hoz L, Ordóñez JA, Tomás-Barberán FA (2003) Phenolic compounds and fatty acids from acorns (Quercus spp.), the main dietary constituent of free-ranged Iberian pigs. J Agric Food Chem 51:6248–6255

    Article  CAS  PubMed  Google Scholar 

  34. Rabhi F, Narváez-Rivas M, Tlili N, Boukhchina S, León-Camacho M (2016) Sterol, aliphatic alcohol and tocopherol contents of Quercus ilex and Quercus suber from different regions. Ind Crop Prod 83:781–786

    Article  CAS  Google Scholar 

  35. Petrović S, Šobajić S, Rakić S, Tomić A, Kukić J (2004) Investigation of kernel oils of Quercus robur and Quercus cerris. Chem Nat Compd 40:420–422

    Article  Google Scholar 

  36. Karolyi D, Salajpal K, Kis G, Đikic M, Juric I (2007) Influence of finishing diet on fatty acid profile of longissimus muscle of Black Slavonian pigs. Agric Sci Rev 13:176–179

    Google Scholar 

  37. Ostlund R, Lin X (2006) Regulation of cholesterol absorption by phytosterols. Curr Atheroscler Rep 8:487–491

    Article  CAS  PubMed  Google Scholar 

  38. Barreira JCM, Ferreira ICFR (2015) Steroids in natural matrices: chemical features and bioactive properties. In: Gupta VK, Tuohy MG (eds) Biotechnology of bioactive compounds: sources and applications. Wiley, Chichester, pp 395–432

    Google Scholar 

  39. Volin P (2001) Analysis of steroidal lipids by gas and liquid chromatography. J Chromatogr A 935:125–140

    Article  CAS  PubMed  Google Scholar 

  40. Hilmarsson H, Traustason B, Kristmundsdottir T, Thormar H (2007) Virucidal activities of medium- and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: comparison at different pH levels. Arch Virol 152:2225–2236

    Article  CAS  PubMed  Google Scholar 

  41. Kim JJ, Ghimire BK, Shin HC, Lee KJ, Song KS, Chung YS, Yoon TS, Lee YJ, Kim EH, Chung IM (2012) Comparison of phenolic compounds content in indeciduous Quercus species. J Med Plant Res 6:5228–5239

    Article  CAS  Google Scholar 

  42. Brossa R, Casals I, Pintó-Marijuan M, Fleck I (2009) Leaf flavonoid content in Quercus ilex L. resprouts and its seasonal variation. Trees 23:401–408

    Article  CAS  Google Scholar 

  43. Saffarzadeh A, Vincze L, Csapo J (1999) Determination of the chemical composition of acorn (Quercus branti), Pistacia atlantica and Pistacia Khinjk seeds as non-conventional feedstuffs. Acta Agr Kapos 3:59–69

    Google Scholar 

  44. Cadahía E, Muñoz L, Fernández de Simón B, García-Vallejo MC (2001) Changes in low molecular weight phenolic compounds in Spanish, French, and American oak woods during natural seasoning and toasting. J Agric Food Chem 49:1790–1798

    Article  PubMed  CAS  Google Scholar 

  45. Ferreira-Dias S, Valente DG, Abreu JMF (2003) Pattern recognition of acorns from different Quercus species based on oil content and fatty acid profile. Grasas Aceites 54:384–391

    CAS  Google Scholar 

  46. Andrenšek S, Simonovska B, Vovk I, Fyhrquist P, Vuorela H, Vuorela P (2004) Antimicrobial and antioxidative enrichment of oak (Quercus robur) bark by rotation planar extraction using ExtraChrom. Int J Food Microbiol 92:181–187

    Article  PubMed  CAS  Google Scholar 

  47. Marquart TJ, Scholes CM, Chapman JM (2007) Distribution, quantification and identification of tannins in acorns from red and white oak trees. The Midwest regional meeting, 7–10 November, Kansas City

    Google Scholar 

  48. Vanhessche BA, Vandermillion AM, Scott DE, Scholes CM, Chapman JM (2007) Distribution, quantification and identification of tannins in acorns from blackjack, sawtooth and Texas live oak trees. The Midwest regional meeting, 7–10 November

    Google Scholar 

  49. Rocha-Guzmán NE, Gallegos-Infante JA, González-Laredo RF, Reynoso-Camacho R, Ramos-Gómez M, Garcia-Gasca T, Rodríguez-Muñoz ME, Guzmán-Maldonado SH, Medina-Torres L, Lujan-García BA (2009) Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem 115:132–135

    Article  CAS  Google Scholar 

  50. Popović BM, Štajner D, Ždero R, Orlović S, Galić Z (2013) Antioxidant characterization of oak extracts combining spectrophotometric assays and chemometrics. Sci World J 2013:1–8

    Google Scholar 

  51. Castro-Vázquez L, Alañón ME, Ricardo-da-Silva JM (2013) Valuation of Portuguese and Spanish Quercus pyrenaica and Castanea sativa species used in cooperage as natural source of phenolic compounds. Eur Food Res Technol 237:367–375

    Article  CAS  Google Scholar 

  52. García-Villalba R, Espín JC, Tomás-Barberán FA, Rocha-Guzmán NE (2017) Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J Food Compos Anal 63:38–46

    Article  CAS  Google Scholar 

  53. Karimi A, Moradi MT (2015) Total phenolic compounds and in vitro antioxidant potential of crude methanol extract and the correspond fractions of Quercus brantii L. acorn. J Herb Med Pharmacol 4:35–39

    CAS  Google Scholar 

  54. Aslani A, Ghannadi A, Najafi H (2013) Design, formulation and evaluation of a mucoadhesive gel from Quercus brantii L. and Coriandrum sativum L. as periodontal drug delivery. Adv Biomed Res 2013:2–21

    Google Scholar 

  55. Moradi M, Karimi A, Alidadi S (2016) In vitro antiproliferative and apoptosis-inducing activities of crude ethyle alcohole extract of Quercus brantii L. acorn and subsequent fractions. Chin J Nat Med 14:196–202

    PubMed  Google Scholar 

  56. Hobby GH, Quave CL, Nelson K, Compadre CM, Beenken KE, Smeltzer MS (2012) Quercus cerris extracts limit Staphylococcus aureus biofilm formation. J Ethnopharmacol 144:812–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jamil M, Ul Haq I, Mirza B, Qayyum M (2012) Isolation of antibacterial compounds from Quercus dilatata L. through bioassay guided fractionation. Ann Clin Microbiol Antimicrob 11(11)

    Article  PubMed  PubMed Central  Google Scholar 

  58. Moreno-Jimenez MR, Trujillo-Esquivel F, Gallegos-Corona MA, Reynoso-Camacho R, Gonzalez-Laredo RF, Gallegos-Infante JA, Rocha-Guzman NE, Ramos-Gomez M (2015) Antioxidant, anti-inflammatory and anticarcinogenic activities of edible red oak (Quercus spp.) infusions in rat colon carcinogenesis induced by 1,2-dimethylhydrazine. Food Chem Toxicol 80:144–153

    Article  CAS  PubMed  Google Scholar 

  59. Sánchez-Burgos JA, Ramírez-Mares MV, Larrosa MM, Gallegos-Infante JA, González-Laredo RF, Medina-Torres L, Rocha-Guzmán NE (2013) Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species. Ind Crop Prod 42:57–62

    Article  CAS  Google Scholar 

  60. Berahou A, Auhmani A, Fdil N, Benharref A, Jana M, Gadhi CA (2007) Antibacterial activity of Quercus ilex bark’s extracts. J Ethnopharmacol 112:426–429

    Article  CAS  PubMed  Google Scholar 

  61. Gharzouli K, Khennouf S, Amira S, Gharzouli A (1999) Effects of aqueous extracts from Quercus ilex L. root bark, Punica granatum L. fruit peel and Artemisia herba-alba Asso leaves on ethanol-induced gastric damage in rats. Phytother Res 13:42–45

    Article  CAS  PubMed  Google Scholar 

  62. Güllüce M, Adigüzel A, Oğütçü H, Sengül M, Karaman I, Sahin F (2004) Antimicrobial effects of Quercus ilex L. extract. Phytother Res 18:208–211

    Article  PubMed  Google Scholar 

  63. Kaur G, Hamid H, Ali A, Alam MS, Athar M (2004) Antiinflammatory evaluation of alcoholic extract of galls of Quercus infectoria. J Ethnopharmacol 90:285–292

    Article  PubMed  Google Scholar 

  64. Basri D, Fan S (2005) The potential of aqueous and acetone extracts of galls of Quercus infectoria as antibacterial agents. Indian J Pharmacol 37:26–29

    Article  Google Scholar 

  65. Uddin G, Rauf A (2012) Phytochemical screening, antimicrobial and antioxidant activities of aerial parts of Quercus robur L. J Med Plant Res 1:1–4

    Google Scholar 

  66. Custódio L, Patarra J, Alberício F, Neng NR, Nogueira JMF, Romano A (2015) Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer’s disease. Ind Crop Prod 64:45–51

    Article  CAS  Google Scholar 

  67. Sung SH, Kim KH, Jeon BT, Cheong SH, Park JH, Kim DH, Kweon HJ, Moon SH (2012) Antibacterial and antioxidant activities of tannins extracted from agricultural by-products. J Med Plant Res 6:3072–3079

    CAS  Google Scholar 

  68. Toori MA, Mirzaei M, Mirzaei N, Lamrood P, Mirzaei A (2013) Antioxidant and hepatoprotective effects of the internal layer of oak fruit (Jaft). J Med Plant Res 7:24–28

    CAS  Google Scholar 

  69. Akcan T, Gökçe R, Asensio M, Estevez M, Morcuende D (2017) Acorn (Quercus spp.) as a novel source of oleic acid and tocopherols for livestock and humans: discrimination of selected species from Mediterranean forest. J Food Sci Technol 54:3050–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gezici S, Sekeroglu N (2019) Neuroprotective potential and phytochemical composition of acorn fruits. Ind Crop Prod 128:13–17

    Article  CAS  Google Scholar 

  71. Rtibi K, Hammamic I, Selmia S, Gramia D, Sebaia H, Amrib M, Marzouki L (2017) Phytochemical properties and pharmacological effects of Quercus ilex L. aqueous extract on gastrointestinal physiological parameters in vitro and in vivo. Biomed Pharmacother 94:787–793

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João C. M. Barreira .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vinha, A.F., Barreira, J.C.M., Ferreira, I.C.F.R., Oliveira, M.B.P.P. (2020). Therapeutic, Phytochemistry, and Pharmacology of Acorns (Quercus Nuts): A Review. In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06120-3_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06120-3

  • Online ISBN: 978-3-030-06120-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics