Skip to main content

Bioactive Compounds of Red-Jambo Fruit (Syzygium malaccense (L.) Merr. & L.M. Perry)

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Fruits and Nuts

Abstract

Red-jambo is a phenolic compound-rich fruit found in tropical areas of Malaysia and other warm regions of Asia and South America. The phytochemical composition including dietary fibers, phenolic compounds, carotenoids, and volatile compounds of red-jambo fruit has been highlighted along the chapter, as well as antioxidant capacity of its edible parts. The main phenolic compounds in red-jambo are anthocyanins, such as cyanidin-3-O-glucoside, cyanidin-3,5-O-diglucoside, and peonidin-3-O-glucoside concentrated in the peel. Isorhamnetin-3-O-glucoside, quercetin derivatives, catechins, and procyanidins are other flavonoids present mainly in red-jambo fruit peel. The phenolic compounds of the fruit contribute to the majority of the total antioxidant capacity of red-jambo. As potential to functional properties, in vitro studies showed antiproliferative effects of red-jambo fruit extracts against breast and liver tumor cell lines. The bioactive compounds of red-jambo incite investigation on possible relation with in vivo functional properties, mainly with regard to anticancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABTS:

2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)

C3G:

Cyanidin 3-glucoside equivalents

CAA:

Cellular antioxidant activity assay

CE:

Catechin equivalents

DPPH:

2,2-Diphenyl-1-picrylhydrazyl assay

FLD:

Fluorescence detector

FRAP:

Ferric reducing antioxidant power assay

GAE:

Gallic acid equivalents

HepG2:

Human hepatoma cell line

H-ORAC:

Hydrophilic oxygen radical absorbance capacity assay

HPLC:

High-performance liquid chromatography

L-ORAC:

Lipophilic oxygen radical absorbance capacity assay

MCF-7:

Hormone-dependent breast cancer cell line

MDA-MB-231:

Nonhormone-dependent breast cancer cell line

ORAC:

Oxygen radical absorbance capacity assay

PDA:

Diode array detector

PSC:

Peroxyl radical scavenging capacity assay

QE:

Quercetin equivalents

TE:

Trolox equivalents

TEAC:

Trolox equivalent antioxidant capacity assay

UV/Vis:

Ultraviolet visible detector

VitCE:

Vitamin C equivalents

ww:

Wet weight

References

  1. Morton JF (1987) Malay apple. In: Morton JF (ed) Fruits of warm climates. Creative Resources Systems, Miami

    Google Scholar 

  2. Wong K, Lai F (1996) Volatile constituents from the fruits of four Syzygium species grown in Malaysia. Flavour Fragr J 11:61–66

    Article  CAS  Google Scholar 

  3. Ikram EHK, Eng KH, Jalil AMM, Ismail A, Idris S, Azlan A, Nazri HSM, Diton NAM, Mokhtar RAM (2009) Antioxidant capacity and total phenolic content of Malaysian underutilized fruits. J Food Compos Anal 22:388–393

    Article  CAS  Google Scholar 

  4. Sankat C, Basanta A, Maharaj V (2000) Light mediated red colour degradation of the pomerac (Syzygium malaccense) in refrigerated storage. Postharvest Biol Technol 18:253–257

    Article  Google Scholar 

  5. Weisler M, Murakami GM (1991) The use of mountain-apple (Syzygium malaccense) in a prehistoric Hawaiian domestic structure. Econ Botany 45:282–285

    Google Scholar 

  6. Emanuel M, Benkeblia N (2013) Variation of reducing and total sugars, total phenolics and anthocyanins in otaheite (Syzygium Malaccense l.) during three “on tree” ripening stages. Acta Hortic 1012:161–164

    Article  Google Scholar 

  7. Batista ÂG, Da Silva JK, Betim Cazarin CB, Biasoto ACT, Sawaya ACHF, Prado MA, Maróstica Júnior MR (2017) Red-jambo (Syzygium malaccense): bioactive compounds in fruits and leaves. LWT Food Sci Technol 76:284–291

    Article  CAS  Google Scholar 

  8. Lako J, Trenerry VC, Wahlqvist M, Wattanapenpaiboon N, Sotheeswaran S, Premier R (2007) Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods. Food Chem 101:1727–1741

    Article  CAS  Google Scholar 

  9. Reynertson KA, Yang H, Jiang B, Basile MJ, Kennelly EJ (2008) Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chem 109:883–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maisuthisakul P, Pasuk S, Ritthiruangdej P (2008) Relationship between antioxidant properties and chemical composition of some Thai plants. J Food Compos Anal 21:229–240

    Article  CAS  Google Scholar 

  11. Andersson Dunstan C, Noreen Y, Serrano G, Cox PA, Perera P, Bohlin L (1997) Evaluation of some Samoan and Peruvian medicinal plants by prostaglandin biosynthesis and rat ear oedema assays. J Ethnopharmacol 57:35–56

    Article  Google Scholar 

  12. Arumugam B, Manaharan T, Heng CK, Kuppusamy UR, Palanisamy UD (2014) Antioxidant and antiglycemic potentials of a standardized extract of Syzygium malaccense. LWT Food Sci Technol 59:707–712

    Article  CAS  Google Scholar 

  13. Savitha RC, Padmavathy S, Sundhararajan A (2011) In vitro antioxidant activities on leaf extracts of Syzygium Malaccense (L.) merr and perry. Anc Sci Life 30:110–113

    PubMed  PubMed Central  Google Scholar 

  14. Bairy KL, Sharma A, Shalini A (2005) Evaluation of the hypoglycemic, Hypolipidaemic and hepatic glycogen raising effects of Syzygium malaccense upon Streptozotocin induced diabetic rats. J Nat Rem 5:46–51

    Google Scholar 

  15. Santos PH, Silva LHMD, Rodrigues AMDC, Souza JARD (2016) Influence of temperature, concentration and shear rate on the rheological behavior of Malay apple (Syzygium malaccense) juice. Braz J Food Technol 19:e2015009

    Google Scholar 

  16. Nunes PC, Aquino JS, Rockenbach II, Stamford TLM (2016) Physico-chemical characterization, bioactive compounds and antioxidant activity of Malay apple [Syzygium malaccense (L.) Merr. & L.M. Perry]. PLoS One 11:e0158134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Augusta IM, Resende JM, Borges SV, MCA M, MAPG C (2010) Caracterização física e química da casca e polpa de jambo vermelho (Syzygium malaccensis (L.) Merryl & Perry). Ciencia E Tecnologia De Alimentos 30:928–936

    Article  Google Scholar 

  18. Oliveira FP, Gallão M, Rodrigues S, Fernandes F (2011) Dehydration of Malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food Bioprocess Technol 4:610–615

    Article  Google Scholar 

  19. Cardoso RL (2008) Estabilidade da cor de geléia de jambo (Eugenia malaccensis, l.) sem casca armazenada aos 25 °C e 35 °C na presença e ausência de luz. Ciência e Agrotecnologia 32:1563–1567

    Article  Google Scholar 

  20. Jakobsdottir G, Xu J, Molin G, Ahrné S, Nyman M (2013) High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 8:e80476

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Titgemeyer EC, Bourquin LD, Fahey GC, Garleb KA (1991) Fermentability of various fiber sources by human fecal bacteria in vitro. Am J Clin Nutr 53:1418–1424

    Article  CAS  PubMed  Google Scholar 

  22. Batista ÂG, da Silva-Maia JK, Mendonça MCP, Soares ES, Lima GC, Bogusz Junior S, da Cruz-Höfling MA, Maróstica Júnior MR (2018) Jaboticaba berry peel intake increases short chain fatty acids production and prevent hepatic steatosis in mice fed high-fat diet. J Funct Foods 48:266–274

    Article  CAS  Google Scholar 

  23. Kotepong P, Ketsa S, van Doorn WG (2011) A white mutant of Malay apple fruit (Syzygium malaccense) lacks transcript expression and activity for the last enzyme of anthocyanin synthesis, and the normal expression of a MYB transcription factor. Funct Plant Biol 38:75–86

    Article  CAS  Google Scholar 

  24. Vuolo MM, Batista ÂG, Biasoto ACT, Correa LC, Júnior MRM, Liu RH (2019) Red-jambo peel extract shows antiproliferative activity against HepG2 human hepatoma cells. Food Res Int 124:93–100

    Article  CAS  PubMed  Google Scholar 

  25. Lim ASL, Rabeta MS (2012) Proximate analysis mineral content and antioxidant capacity of milk apple, malay apple and water apple. Int Food Res J 20:673–679

    Google Scholar 

  26. Prior RL, Hoang H, Gu LW, Wu XL, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang DJ, Ou BX, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J Agr Food Chem 51:3273–3279

    Article  CAS  Google Scholar 

  27. Davalos A, Gomez-Cordoves C, Bartolome B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 52:48–54

    Article  CAS  PubMed  Google Scholar 

  28. Adom KK, Liu RH (2005) Rapid peroxyl radical scavenging capacity (PSC) assay for assessing both hydrophilic and lipophilic antioxidants. J Agric Food Chem 53:6572–6580

    Article  CAS  PubMed  Google Scholar 

  29. Marques Peixoto F, Fernandes I, Gouvêa ACMS, Santiago MCPA, Galhardo Borguini R, Mateus N, Freitas V, Godoy RLO, Ferreira IMPLVO (2016) Simulation of in vitro digestion coupled to gastric and intestinal transport models to estimate absorption of anthocyanins from peel powder of jabuticaba, jamelão and jambo fruits. J Funct Foods 24:373–381

    Article  CAS  Google Scholar 

  30. Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42

    Article  Google Scholar 

  31. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006

    Article  CAS  Google Scholar 

  32. Khoo H, Ismail A, Mohd-Esa N, Idris S (2008) Carotenoid content of underutilized tropical fruits. Plant Foods Hum Nutr 63:170–175

    Article  CAS  PubMed  Google Scholar 

  33. Pino JA, Marbot R, Rosado A, Vazquez C (2004) Volatile constituents of Malay rose apple [Syzygium malaccense (L.) Merr. & Perry]. Flavour Fragrance J 19:32–35

    Article  CAS  Google Scholar 

  34. Ismail IS, Ismail N, Lajis N (2010) Ichthyotoxic properties and essential oils of Syzygium malaccense (Myrtaceae). Pertanika J Sci Technol 18:1–6

    Google Scholar 

  35. Zhu YJ, Zhou HT, Hu YH, Tang JY, Su MX, Guo YJ, Chen QX, Liu B (2011) Antityrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chem 124:298–302

    Article  CAS  Google Scholar 

  36. Han TL, Tumanov S, Cannon RD, Villas-Boas SG (2013) Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions. PLoS One 8:e71364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haehner A, Tosch C, Wolz M, Klingelhoefer L, Fauser M, Storch A, Reichmann H, Hummel T (2013) Olfactory training in patients with Parkinson's disease. PLoS One 8:e61680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang RS, Twu CW, Liang KL (2017) The effect of olfactory training on the odor threshold in patients with traumatic anosmia. Am J Rhinol Allergy 31:317–322

    Article  PubMed  Google Scholar 

  39. Batista ÂG, Soares ES, Mendonça MCP, da Silva JK, Dionísio AP, Sartori CR, da Cruz-Höfling MA, Maróstica Júnior MR (2017) Jaboticaba berry peel intake prevents insulin-resistance-induced tau phosphorylation in mice. Mol Nutr Food Res 61:1600952

    Article  CAS  Google Scholar 

  40. Carey AN, Galli RL (2017) Mitigating the effects of high fat diet on the brain and behavior with berry supplementation. Food Funct 8:3869–3878

    Article  CAS  PubMed  Google Scholar 

  41. Rabeta M, Chan S, Neda G, Lam K, Ong M (2013) Anticancer effect of underutilized fruits. Int Food Res J 20:551–556

    CAS  Google Scholar 

  42. Aisha AFA, Abu-Salah KM, Alrokayan SA, Siddiqui MJ, Ismail Z, Majid AMSA (2012) Syzygium aromaticum extracts as good source of betulinic acid and potential anti-breast cancer. Rev Bras 22:335–343

    CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES (Finance Code 001); Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (403328/2016-0; 301108/2016-1); and Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2015/50333-1; 2018/11069-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ângela Giovana Batista .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Batista, Â.G., da Silva-Maia, J.K., Júnior, M.R.M. (2019). Bioactive Compounds of Red-Jambo Fruit (Syzygium malaccense (L.) Merr. & L.M. Perry). In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06120-3_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06120-3

  • Online ISBN: 978-3-030-06120-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics