Skip to main content

Bioactive Compounds of the Brazil Nut (Bertholletia excelsa Bonpl.): Nutritional and Health Aspects

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Fruits and Nuts

Abstract

The Bertholletia excelsa Bonpl. seed, Brazil nut, is one of the most important non-timber forest products in the Amazon forest. The commercialization of this nut provides one of the significant sources of income for many indigenous and riverine communities. B. excelsa production is considered organic and environmentally correct. The kernel is an excellent source of protein, energy, and minerals such as selenium (Se), calcium, and magnesium. Selenium is the predominant mineral in B. excelsa, essential in numerous physiological functions. B. excelsa seed has a valuable bioactive composition, including phenolics, flavonoids, tocopherol, and phytosterols, unsaturated fatty acids, proteins, amino acids, and dietary fiber. Intake of phenolic compounds has been associated with potential beneficial health effects related to anti-inflammatory, antimutagenic, and anticarcinogenic activities. Lipids from B. excelsa are considered as beneficial for health due to the high content of monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) and low concentration of saturated fatty acids (SFAs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

GAE:

Gallic acid equivalent

GPx:

Glutathione peroxidases

IDI:

Iodothyronine deiodinases

MUFAs:

Monounsaturated fatty acids

PUFAs:

Polyunsaturated fatty acids

RDA:

Recommended Daily Allowance

Se:

Selenium

SFAs:

Saturated fatty acids

TEAC:

Trolox equivalent antioxidant capacity

References

  1. Santos OV, Corrêa NCF, Carvalho RN, Costa CEF, Lannes SCS (2013) Yield, nutritional quality, and thermal-oxidative stability of Brazil nut oil (Bertholletia excelsa H.B.K) obtained by supercritical extraction. J Food Eng 117:499–504. https://doi.org/10.1016/j.jfoodeng.2013.01.013

    Article  CAS  Google Scholar 

  2. Pardauil JJR, Souza LKC, Molfetta FA, Zamian JR, Rocha Filho GN, da Costa CEF (2011) Determination of the oxidative stability by DSC of vegetable oils from the Amazonian area. Bioresour Technol 102:5873–5877. https://doi.org/10.1016/j.biortech.2011.02.022

    Article  CAS  PubMed  Google Scholar 

  3. dos Santos OV, Lopes AS, Azevedo GO, Santos ÂC (2010) Processing of Brazil-nut flour: characterization, thermal and morphological analysis. Ciênc Tecnol Aliment 30:264–269. https://doi.org/10.1590/s0101-20612010000500040

    Article  Google Scholar 

  4. Santos OV, Corrêa NCF, Soares FASM, Gioielli LA, Costa CEF, Lannes SCS (2012) Chemical evaluation and thermal behavior of Brazil nut oil obtained by different extraction processes. Food Res Int 47:253–258. https://doi.org/10.1016/j.foodres.2011.06.038

    Article  CAS  Google Scholar 

  5. da Silva AC, Sarturi HJ, Dall’Oglio EL, Soares MA, de Sousa PT, Gomes de Vasconcelos L, Kuhnen CA (2016) Microwave drying and disinfestation of Brazil nut seeds. Food Control 70:119–129. https://doi.org/10.1016/j.foodcont.2016.04.049

    Article  CAS  Google Scholar 

  6. Ribeiro MBN, Jerozolimski A, de Robert P, Salles NV, Kayapó B, Pimentel TP, Magnusson WE (2014) Anthropogenic landscape in southeastern Amazonia: contemporary impacts of low-intensity harvesting and dispersal of Brazil nuts by the Kayapó indigenous people. PLoS One 9:e102187. https://doi.org/10.1371/journal.pone.0102187

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yang J (2009) Brazil nuts and associated health benefits: a review. LWT Food Sci Technol 42:1573–1580. https://doi.org/10.1016/j.lwt.2009.05.019

    Article  CAS  Google Scholar 

  8. Gomes S, Torres AG (2016) Optimized extraction of polyphenolic antioxidant compounds from Brazil nut (Bertholletia excelsa) cake and evaluation of the polyphenol profile by HPLC. J Sci Food Agric 96:2805–2814. https://doi.org/10.1002/jsfa.7448

    Article  CAS  PubMed  Google Scholar 

  9. Colpo E, Dalton DA, Vilanova C, Reetz LGB, Duarte MMMF, Farias ILG, Meinerz DF, Mariano DOC, Vendrusculo RG, Boligon AA, Dalla Corte CL, Wagner R, Athayde ML, da Rocha JBT (2014) Brazilian nut consumption by healthy volunteers improves inflammatory parameters. Nutrition 30:459–465. https://doi.org/10.1016/j.nut.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  10. Fordyce FM (2013) Selenium deficiency and toxicity in the environment. In: Essentials of medical geology. Springer Netherlands, Dordrecht, pp 375–416

    Chapter  Google Scholar 

  11. Silva Junior EC, Wadt LHO, Silva KE, Lima RMB, Batista KD, Guedes MC, Carvalho GS, Carvalho TS, Reis AR, Lopes G, Guilherme LRG (2017) Natural variation of selenium in Brazil nuts and soils from the Amazon region. Chemosphere 188:650–658. https://doi.org/10.1016/j.chemosphere.2017.08.158

    Article  CAS  PubMed  Google Scholar 

  12. dos Santos M, da Silva Júnior FMR, Muccillo-Baisch AL (2017) Selenium content of Brazilian foods: a review of the literature values. J Food Compos Anal 58:10–15. https://doi.org/10.1016/J.JFCA.2017.01.001

    Article  Google Scholar 

  13. Chang JC, Gutenmann WH, Reid CM, Lisk DJ (1995) Selenium content of Brazil nuts from two geographic locations in Brazil. Chemosphere 30:801–802. https://doi.org/10.1016/0045-6535(94)00409-N

    Article  CAS  PubMed  Google Scholar 

  14. Dumont E, De Pauw L, Vanhaecke F, Cornelis R (2006) Speciation of Se in Bertholletia excelsa (Brazil nut): a hard nut to crack? Food Chem 95:684–692. https://doi.org/10.1016/j.foodchem.2005.04.004

    Article  CAS  Google Scholar 

  15. Lemire M, Fillion M, Barbosa F Jr, Guimarães JRD, Mergler D, Barbosa F, Guimarães JRD, Mergler D (2010) Elevated levels of selenium in the typical diet of Amazonian riverside populations. Sci Total Environ 408:4076–4084. https://doi.org/10.1016/j.scitotenv.2010.05.022

    Article  CAS  PubMed  Google Scholar 

  16. Rayman MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 100:254–268. https://doi.org/10.1017/S0007114508939830

    Article  CAS  PubMed  Google Scholar 

  17. Taş NG, Gökmen V (2017) Phenolic compounds in natural and roasted nuts and their skins: a brief review. Curr Opin Food Sci 14:103–109. https://doi.org/10.1016/j.cofs.2017.03.001

    Article  Google Scholar 

  18. Venkatachalan M, Sathe SK, Venkatachalam M, Sathe SK (2006) Chemical composition of selected edible nut seeds. J Agric Food Chem 54:4705–4714. https://doi.org/10.1021/jf0606959

    Article  CAS  Google Scholar 

  19. Schlörmann W, Birringer M, Böhm V, Löber K, Jahreis G, Lorkowski S, Müller AK, Schöne F, Glei M (2015) Influence of roasting conditions on health-related compounds in different nuts. Food Chem 180:77–85. https://doi.org/10.1016/j.foodchem.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  20. Chang SK, Alasalvar C, Shahidi F (2016) Review of dried fruits: phytochemicals, antioxidant efficacies, and health benefits. J Funct Foods 21:113–132. https://doi.org/10.1016/j.jff.2015.11.034

    Article  CAS  Google Scholar 

  21. Bolling BW, Chen C-YO, McKay DL, Blumberg JB (2011) Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr Res Rev 24:244–275. https://doi.org/10.1017/s095442241100014x

    Article  CAS  PubMed  Google Scholar 

  22. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485S. https://doi.org/10.1093/jn/134.12.3479s

    Article  CAS  PubMed  Google Scholar 

  23. Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – a review. J Funct Foods 18:820–897. https://doi.org/10.1016/j.jff.2015.06.018

    Article  CAS  Google Scholar 

  24. Taş NG, Gökmen V (2015) Bioactive compounds in different hazelnut varieties and their skins. J Food Compos Anal 43:203–208. https://doi.org/10.1016/j.jfca.2015.07.003

    Article  CAS  Google Scholar 

  25. Tresserra-Rimbau A, Medina-Remón A, Pérez-Jiménez J, Martínez-González MA, Covas MI, Corella D, Salas-Salvadó J, Gómez-Gracia E, Lapetra J, Arós F, Fiol M, Ros E, Serra-Majem L, Pintó X, Muñoz MA, Saez GT, Ruiz-Gutiérrez V, Warnberg J, Estruch R, Lamuela-Raventós RM (2013) Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: the PREDIMED study. Nutr Metab Cardiovasc Dis 23:953–959. https://doi.org/10.1016/j.numecd.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  26. Cardoso BR, Duarte GBSS, Reis BZ, Cozzolino SMF (2017) Brazil nuts: nutritional composition, health benefits and safety aspects. Food Res Int 100:9–18. https://doi.org/10.1016/j.foodres.2017.08.036

    Article  CAS  PubMed  Google Scholar 

  27. Vargas EAA, dos Santos EAA, Whitaker TBB, Slate ABB (2011) Determination of aflatoxin risk components for in-shell Brazil nuts. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28:1242–1260. https://doi.org/10.1080/19440049.2011.596488

    Article  CAS  PubMed  Google Scholar 

  28. Arrus K, Blank G, Abramson D, Clear R, Holley RAA (2005) Aflatoxin production by Aspergillus flavus in Brazil nuts. J Stored Prod Res 41:513–527. https://doi.org/10.1016/j.jspr.2004.07.005

    Article  CAS  Google Scholar 

  29. De Mello FR, Scussel VM (2007) Characteristics of in-shell Brazil nuts and their relationship to aflatoxin contamination: criteria for sorting. J Agric Food Chem 55:9305–9310. https://doi.org/10.1021/jf071392x

    Article  CAS  PubMed  Google Scholar 

  30. Martins M, Klusczcovski AM, Scussel VM (2014) In vitro activity of the Brazil nut (Bertholletia excelsa H.B.K.) oil in aflatoxigenic strains of Aspergillus parasiticus. Eur Food Res Technol 239:687–693. https://doi.org/10.1007/s00217-014-2265-1

    Article  CAS  Google Scholar 

  31. Pacheco AM, Scussel VM (2007) Selenium and aflatoxin levels in raw Brazil nuts from the amazon basin. J Agric Food Chem 55:11087–11092. https://doi.org/10.1021/jf072434k

    Article  CAS  PubMed  Google Scholar 

  32. Baquião AC, Zorzete P, Reis TA, Assunção E, Vergueiro S, Correa B (2012) Mycoflora and mycotoxins in field samples of Brazil nuts. Food Control 28:224–229. https://doi.org/10.1016/j.foodcont.2012.05.004

    Article  CAS  Google Scholar 

  33. Bahadoran Z, Golzarand M, Mirmiran P, Saadati N, Azizi F (2013) The association of dietary phytochemical index and cardiometabolic risk factors in adults: Tehran Lipid and Glucose Study. J Hum Nutr Diet 26:145–153. https://doi.org/10.1111/jhn.12048

    Article  PubMed  Google Scholar 

  34. Yang J, Liu RH, Halim L (2009) Antioxidant and antiproliferative activities of common edible nut seeds. LWT Food Sci Technol 42:1–8. https://doi.org/10.1016/j.lwt.2008.07.007

    Article  CAS  Google Scholar 

  35. Ryan E, Galvin K, O’Connor TP, Maguire AR, O’Brien NM (2006) Fatty acid profile, tocopherol, squalene and phytosterol content of Brazil, pecan, pine, pistachio and cashew nuts. Int J Food Sci Nutr 57:219–228. https://doi.org/10.1080/09637480600768077

    Article  CAS  PubMed  Google Scholar 

  36. John JA, Shahidi F (2010) Phenolic compounds and antioxidant activity of Brazil nut (Bertholletia excelsa). J Funct Foods 2:196–209. https://doi.org/10.1016/j.jff.2010.04.008

    Article  CAS  Google Scholar 

  37. da Costa PA, Ballus CA, Teixeira-Filho J, Godoy HT (2010) Phytosterols and tocopherols content of pulps and nuts of Brazilian fruits. Food Res Int 43:1603–1606. https://doi.org/10.1016/j.foodres.2010.04.025

    Article  CAS  Google Scholar 

  38. Alasalvar C, Bolling BW (2015) Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br J Nutr 113:S68–S78. https://doi.org/10.1017/S0007114514003729

    Article  CAS  PubMed  Google Scholar 

  39. Vinson JA, Cai Y (2012) Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits. Food Funct 3:134–140. https://doi.org/10.1039/c2fo10152a

    Article  CAS  PubMed  Google Scholar 

  40. Kornsteiner M, Wagner K-HH, Elmadfa I (2006) Tocopherols and total phenolics in 10 different nut types. Food Chem 98:381–387. https://doi.org/10.1016/j.foodchem.2005.07.033

    Article  CAS  Google Scholar 

  41. Keys A, Anderson J, Grande F (1957) Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet 270:959–966. https://doi.org/10.1016/S0140-6736(57)91998-0

    Article  Google Scholar 

  42. Keys A, Anderson J, Grande F (1957) “Essential” fatty acids, degree of unsaturation, and effect of corn (maize) oil on the serum-cholesterol level in man. Lancet 269:66–68. https://doi.org/10.1016/S0140-6736(57)90253-2

    Article  Google Scholar 

  43. Lagarda MJ, García-Llatas G, Farré R (2006) Analysis of phytosterols in foods. J Pharm Biomed Anal 41:1486–1496. https://doi.org/10.1016/j.jpba.2006.02.052

    Article  CAS  PubMed  Google Scholar 

  44. Ahsan H, Ahad A, Iqbal J, Siddiqui WA (2014) Pharmacological potential of tocotrienols: a review. Nutr Metab (Lond) 11:52. https://doi.org/10.1186/1743-7075-11-52

    Article  CAS  Google Scholar 

  45. Shahidi F, de Camargo A (2016) Tocopherols and tocotrienols in common and emerging dietary sources: occurrence, applications, and health benefits. Int J Mol Sci 17:1745. https://doi.org/10.3390/ijms17101745

    Article  CAS  PubMed Central  Google Scholar 

  46. Vaiserman AM, Lushchak OV, Koliada AK (2016) Anti-aging pharmacology: promises and pitfalls. Ageing Res Rev 31:9–35. https://doi.org/10.1016/j.arr.2016.08.004

    Article  PubMed  Google Scholar 

  47. Rimbach G, Moehring J, Huebbe P, Lodge JK (2010) Gene-regulatory activity of α-tocopherol. Molecules 15:1746–1761. https://doi.org/10.3390/molecules15031746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Flores-Mateo G, Rojas-Rueda D, Basora J, Ros E, Salas-Salvadó J (2013) Nut intake and adiposity: meta-analysis of clinical trials. Am J Clin Nutr 97:1346–1355. https://doi.org/10.3945/ajcn.111.031484

    Article  CAS  PubMed  Google Scholar 

  49. Shang X, Scott D, Hodge A, English DR, Giles GG, Ebeling PR, Sanders KM (2017) Dietary protein from different food sources, incident metabolic syndrome and changes in its components: an 11-year longitudinal study in healthy community-dwelling adults. Clin Nutr 36:1540–1548. https://doi.org/10.1016/j.clnu.2016.09.024

    Article  CAS  PubMed  Google Scholar 

  50. Tan SY, Mattes RD (2013) Appetitive, dietary and health effects of almonds consumed with meals or as snacks: a randomized, controlled trial. Eur J Clin Nutr 67:1205–1214. https://doi.org/10.1038/ejcn.2013.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zaveri S, Drummond S (2009) The effect of including a conventional snack (cereal bar) and a nonconventional snack (almonds) on hunger, eating frequency, dietary intake and body weight. J Hum Nutr Diet 22:461–468. https://doi.org/10.1111/j.1365-277X.2009.00983.x

    Article  CAS  PubMed  Google Scholar 

  52. Santos OV, Corrêa NCF, Carvalho RN, Costa CEF, França LFF, Lannes SCS (2013) Comparative parameters of the nutritional contribution and functional claims of Brazil nut kernels, oil and defatted cake. Food Res Int 51:841–847. https://doi.org/10.1016/j.foodres.2013.01.054

    Article  CAS  Google Scholar 

  53. Malik VS, Li Y, Tobias DK, Pan A, Hu FB (2016) Dietary protein intake and risk of type 2 diabetes in US men and women. Am J Epidemiol 183:715–728. https://doi.org/10.1093/aje/kwv268

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rusu ME, Gheldiu A-M, Mocan A, Vlase L, Popa D-S (2018) Anti-aging potential of tree nuts with a focus on the phytochemical composition, molecular mechanisms and thermal stability of major bioactive compounds. Food Funct 9:2554–2575. https://doi.org/10.1039/C7FO01967J

    Article  CAS  PubMed  Google Scholar 

  55. Medicine I of (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). National Academies Press, Washington, DC

    Google Scholar 

  56. Ros E, Mataix J (2006) Fatty acid composition of nuts – implications for cardiovascular health. Br J Nutr 96:S29–S35. https://doi.org/10.1017/BJN20061861

    Article  CAS  PubMed  Google Scholar 

  57. Monika M, Anna K-D (2019) Nut oils and their dietetic and cosmetic significance: a review. J Oleo Sci 68:111–120. https://doi.org/10.5650/jos.ess18216

    Article  CAS  PubMed  Google Scholar 

  58. Garg ML, Wood LG, Singh H, Moughan PJ (2006) Means of delivering recommended levels of long chain n-3 polyunsaturated fatty acids in human diets. J Food Sci 71:R66–R71. https://doi.org/10.1111/j.1750-3841.2006.00033.x

    Article  CAS  Google Scholar 

  59. da Costa PA, Ballus CA, Teixeira Filho J, Godoy HT (2011) Fatty acids profile of pulp and nuts of Brazilian fruits. Ciênc Tecnol Aliment 31:950–954. https://doi.org/10.1590/s0101-20612011000400020

    Article  Google Scholar 

  60. Cominetti C, de Bortoli MC, Garrido AB, Cozzolino SMFF (2012) Brazilian nut consumption improves selenium status and glutathione peroxidase activity and reduces atherogenic risk in obese women. Nutr Res 32:403–407. https://doi.org/10.1016/j.nutres.2012.05.005

    Article  CAS  PubMed  Google Scholar 

  61. Naozuka J, Oliveira PV (2007) Cu, Fe, Mn and Zn distribution in protein fractions of Brazil-nut, cupuassu seed and coconut pulp by solid-liquid extraction and electrothermal atomic absorption spectrometry. J Braz Chem Soc 18:1547–1553. https://doi.org/10.1590/S0103-50532007000800015

    Article  CAS  Google Scholar 

  62. Universidade Estadual de Campinas – Unicamp (2011) Tabela brasileira de composição de alimentos – TACO, vol 4. http://www.nepa.unicamp.br/taco/tabela.php?ativo=tabela

    Google Scholar 

  63. US Dietary Guidelines Advisory Committee (2015) USDA National Nutrient Database. In: USDA food composition databases. https://ndb.nal.usda.gov/ndb/

  64. Moreda-Piñeiro J, Herbello-Hermelo P, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A (2016) Bioavailability assessment of essential and toxic metals in edible nuts and seeds. Food Chem 205:146–154. https://doi.org/10.1016/j.foodchem.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  65. Welna M, Szymczycha-Madeja A (2014) Improvement of a sample preparation procedure for multi-elemental determination in Brazil nuts by ICP-OES. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 31:658–665. https://doi.org/10.1080/19440049.2014.880134

    Article  CAS  PubMed  Google Scholar 

  66. da Silva EG, Mataveli LRV, Arruda MAZ, Verola Mataveli LR, Zezzi Arruda MA (2013) Speciation analysis of selenium in plankton, Brazil nut and human urine samples by HPLC–ICP-MS. Talanta 110:53–57. https://doi.org/10.1016/j.talanta.2013.02.014

    Article  CAS  PubMed  Google Scholar 

  67. Jayasinghe SB, Caruso JA (2011) Investigation of Se-containing proteins in Bertholletia excelsa H.B.K. (Brazil nuts) by ICPMS, MALDI-MS and LC-ESI-MS methods. Int J Mass Spectrom 307:16–27. https://doi.org/10.1016/j.ijms.2010.12.005

    Article  CAS  Google Scholar 

  68. Németh A, García Reyes JF, Kosáry J, Dernovics M (2013) The relationship of selenium tolerance and speciation in Lecythidaceae species. Metallomics 5:1663–1673. https://doi.org/10.1039/c3mt00140g

    Article  CAS  PubMed  Google Scholar 

  69. Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  70. Vonderheide AP, Wrobel K, Kannamkumarath SS, B’Hymer C, Montes-Bayón M, Ponce de León C, Caruso JA (2002) Characterization of Selenium species in Brazil nuts by HPLC−ICP-MS and ES-MS. J Agric Food Chem 50:5722–5728. https://doi.org/10.1021/jf0256541

    Article  CAS  PubMed  Google Scholar 

  71. Kannamkumarath SS, Wrobel K, Wuilloud RG (2005) Studying the distribution pattern of selenium in nut proteins with information obtained from SEC-UV-ICP-MS and CE-ICP-MS. Talanta 66:153–159. https://doi.org/10.1016/j.talanta.2004.10.010

    Article  CAS  PubMed  Google Scholar 

  72. Moodley R, Kindness A, Jonnalagadda SB (2007) Elemental composition and chemical characteristics of five edible nuts (almond, Brazil, pecan, macadamia and walnut) consumed in Southern Africa. J Environ Sci Heal – Part B Pestic Food Contam Agric Wastes 42:585–591. https://doi.org/10.1080/03601230701391591

    Article  CAS  Google Scholar 

  73. National Institutes of Health (2017) Nutrient recommendations: dietary reference intakes (DRI). In: National Institutes Health. https://ods.od.nih.gov/Health_Information/Dietary_Reference_Intakes.aspx. Accessed 6 Feb 2017

  74. Suliburska J, Krejpcio Z (2014) Evaluation of the content and bioaccessibility of iron, zinc, calcium and magnesium from groats, rice, leguminous grains and nuts. J Food Sci Technol 51:589–594. https://doi.org/10.1007/s13197-011-0535-5

    Article  CAS  PubMed  Google Scholar 

  75. Abdul-Aziz MH, Lipman J, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Dulhunty J, Kaukonen K-M, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Roberts JA (2016) Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J Antimicrob Chemother 71:196–207. https://doi.org/10.1093/jac/dkv288

    Article  CAS  PubMed  Google Scholar 

  76. Cardoso BR, Ong TP, Jacob-Filho W, Jaluul O, Freitas MID’Á, Cozzolino SMFF (2010) Nutritional status of selenium in Alzheimer’s disease patients. Br J Nutr 103:803–806. https://doi.org/10.1017/s0007114509992832

    Article  CAS  PubMed  Google Scholar 

  77. Stoffaneller R, Morse N (2015) A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients 7:1494–1537. https://doi.org/10.3390/nu7031494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Thomson CD (2004) Selenium and iodine intakes and status in New Zealand and Australia. Br J Nutr 91:661–672. https://doi.org/10.1079/BJN20041110

    Article  CAS  PubMed  Google Scholar 

  79. Thomson CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58:391–402. https://doi.org/10.1038/sj.ejcn.1601800

    Article  CAS  PubMed  Google Scholar 

  80. Strunz CC, Oliveira TV, Vinagre JCM, Lima A, Cozzolino S, Maranhão RC (2008) Brazil nut ingestion increased plasma selenium but had minimal effects on lipids, apolipoproteins, and high-density lipoprotein function in human subjects. Nutr Res 28:151–155. https://doi.org/10.1016/j.nutres.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  81. Martens IBG, Cardoso BR, Hare DJ, Niedzwiecki MM, Lajolo FM, Martens A, Cozzolino SMF (2015) Selenium status in preschool children receiving a Brazil nut-enriched diet. Nutrition 31:1339–1343. https://doi.org/10.1016/j.nut.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  82. Vieira Rocha A, Rita Cardoso B, Cominetti C, Barofaldi Bueno R, de Bortoli MC, Farias LA, Teixeira Favaro DI, Aranha Camargo LM, Franciscato Cozzolino SM (2014) Selenium status and hair mercury levels in riverine children from Rondônia, Amazonia. Nutrition 30:1318–1323. https://doi.org/10.1016/j.nut.2014.03.013

    Article  CAS  PubMed  Google Scholar 

  83. Rita Cardoso B, Apolinário D, da Silva Bandeira V, Busse AL, Magaldi RM, Jacob-Filho W, Cozzolino SMF (2016) Effects of Brazil nut consumption on selenium status and cognitive performance in older adults with mild cognitive impairment: a randomized controlled pilot trial. Eur J Nutr 55:107–116. https://doi.org/10.1007/s00394-014-0829-2

    Article  CAS  PubMed  Google Scholar 

  84. Huguenin GVBB, Oliveira GMMM, Moreira ASBB, Saint’Pierre TD, Gonçalves RA, Pinheiro-Mulder AR, Teodoro AJ, Luiz RR, Rosa G (2015) Improvement of antioxidant status after Brazil nut intake in hypertensive and dyslipidemic subjects. Nutr J 14:54. https://doi.org/10.1186/s12937-015-0043-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stockler-Pinto MB, Mafra D, Moraes C, Lobo J, Boaventura GT, Farage NE, Silva WS, Cozzolino SF, Malm O, Stockler-Pinto MB, Silva WS, Malm O, Farage NE, Cozzolino SF, Mafra D, Moraes C (2014) Brazil nut (Bertholletia excelsa, H.B.K.) improves oxidative stress and inflammation biomarkers in hemodialysis patients. Biol Trace Elem Res 158:105–112. https://doi.org/10.1007/s12011-014-9904-z

    Article  CAS  PubMed  Google Scholar 

  86. Thomson CD, Chisholm A, McLachlan SK, Campbell JM (2008) Brazil nuts: an effective way to improve selenium status. Am J Clin Nutr 87:379–384. https://doi.org/10.1093/ajcn/87.2.379

    Article  CAS  PubMed  Google Scholar 

  87. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16:705–743. https://doi.org/10.1089/ars.2011.4145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806. https://doi.org/10.1089/ars.2007.1528

    Article  CAS  PubMed  Google Scholar 

  89. Stockler-Pinto MB, Malm O, Moraes C, Farage NE, Silva WS, Cozzolino SMF, Mafra D (2015) A follow-up study of the chronic kidney disease patients treated with Brazil nut: focus on inflammation and oxidative stress. Biol Trace Elem Res 163:67–72. https://doi.org/10.1007/s12011-014-0167-5

    Article  CAS  PubMed  Google Scholar 

  90. Stockler-Pinto MB, Lobo J, Moraes C, Leal VO, Farage NE, Rocha AV, Boaventura GT, Cozzolino SMF, Malm O, Mafra D (2012) Effect of Brazil nut supplementation on plasma levels of selenium in hemodialysis patients: 12 months of follow-up. J Ren Nutr 22:434–439. https://doi.org/10.1053/j.jrn.2011.08.011

    Article  CAS  PubMed  Google Scholar 

  91. Colpo E, Vilanova CD de A, Brenner Reetz LG, Medeiros Frescura Duarte MM, Farias ILG, Irineu Muller E, Muller ALH, Moraes Flores EM, Wagner R, Da Rocha JBT (2013) A single consumption of high amounts of the Brazil nuts improves lipid profile of healthy volunteers. J Nutr Metab 2013:1–7. https://doi.org/10.1155/2013/653185

    Article  CAS  Google Scholar 

  92. Stef DS, Gergen I (2013) Effect of mineral-enriched diet and medicinal herbs on Fe, Mn, Zn, and Cu uptake in chicken. In: Coles L (ed) Functional Foods: The Connection Between Nutrition, Health, and Food Science. Apple Academic Press, New York, pp 259–278

    Chapter  Google Scholar 

  93. Carvalho RF, Huguenin GVBB, Luiz RR, Moreira ASBB, Oliveira GMMM, Rosa G (2015) Intake of partially defatted Brazil nut flour reduces serum cholesterol in hypercholesterolemic patients- a randomized controlled trial. Nutr J 14:59. https://doi.org/10.1186/s12937-015-0036-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cui H, Wu J, Li C, Lin L (2017) Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles. LWT Food Sci Technol 81:233–242. https://doi.org/10.1016/j.lwt.2017.04.003

    Article  CAS  Google Scholar 

  95. He D, Wang Z, Huang C, Fang X, Chen D (2017) Serum selenium levels and cervical cancer: systematic review and meta-analysis. Biol Trace Elem Res 179:195–202. https://doi.org/10.1007/s12011-017-0982-6

    Article  CAS  PubMed  Google Scholar 

  96. Hu Y, McIntosh GH, Le Leu RK, Somashekar R, Meng XQ, Gopalsamy G, Bambaca L, McKinnon RA, Young GP (2016) Supplementation with Brazil nuts and green tea extract regulates targeted biomarkers related to colorectal cancer risk in humans. Br J Nutr 116:1901–1911. https://doi.org/10.1017/s0007114516003937

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of MCTI/CNPQ/Universal 14/2014 (Process 445648/2014-7), Universal FAPEMAT N° 005-2015 (Process N°. 222927/2015), and CNPq (Process 426479/2016-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katiuchia Pereira Takeuchi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Takeuchi, K.P., Egea, M.B. (2019). Bioactive Compounds of the Brazil Nut (Bertholletia excelsa Bonpl.): Nutritional and Health Aspects. In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06120-3_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06120-3

  • Online ISBN: 978-3-030-06120-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics