Skip to main content

Blind Deconvolution

  • Living reference work entry
  • First Online:
Computer Vision
  • 71 Accesses

Acronyms

BID:

Blind Image Deconvolution

PSF:

Point Spread Function

BTTB:

Block Toeplitz with Toeplitz Blocks

ML:

Maximum Likelihood

MAP:

Maximum a Posteriori

MCMC:

Markov Chain Monte Carlo

AM:

Alternating Minimization

Synonyms

Deblurring; Deconvolution; Kernel estimation; Motion deblurring; PSF estimation

Related Concepts

Definition

Blind image deconvolution is the problem of recovering a sharp image (such as that captured by an ideal pinhole camera) from a blurred and noisy one, without exact knowledge of how the image was blurred. The unknown blurring operation may result from camera motion, scene motion, defocus, or other optical aberrations.

Background

A correct photographic exposure requires a trade-off in exposure time and aperture setting. When illumination is poor, the photographer can choose to use a long exposure time or a large aperture. The first setting results in motion blur when the camera moves relative to objects in the scene...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bishop TE, Molina R, Hopgood JR (2008) Blind restoration of blurred photographs via AR modelling and MCMC. In: IEEE international conference on image processing (ICIP), San Diego

    Google Scholar 

  2. Neal RM (1993) Probabilistic inference using Markov chain Monte Carlo methods. Technical report CRG-TR-93-1, Department of Computer Science, University of Toronto, University of Toronto available online at http://www.cs.toronto.edu/~radford/res-mcmc.html

  3. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis, 3rd edn. Chapman & Hall, New York

    Book  Google Scholar 

  4. Jordan MI, Ghahramani Z, Jaakola TS, Saul LK (1999) An introduction to variational methods for graphical models. Mach Learn 37(2):183–233. Kluwer Academic Publishers

    Google Scholar 

  5. Meiguang J, Roth S, Favaro P (2018) Normalized Blind Deconvolution. In: Proceedings of the European conference on computer vision (ECCV). Springer, vol 11211, pp 668–684

    Google Scholar 

  6. You YL, Kaveh M (1996) A regularization approach to joint blur identification and image restoration. IEEE Trans Image Process 5(3):416–428

    Article  Google Scholar 

  7. Lagendijk RL, Biemond J, Boekee DE (1988) Regularized iterative image restoration with ringing reduction. IEEE Trans Acoust Speech Signal Process 36(12):1874–1887

    Article  Google Scholar 

  8. Katsaggelos AK (1985) Iterative image restoration algorithms. Ph.D. thesis, Georgia Institute of Technology, School of Electrical Engineering, Bombai

    Google Scholar 

  9. Katsaggelos AK, Biemond J, Schafer RW, Mersereau RM (1991) A regularized iterative image restoration algorithm. IEEE Trans Signal Process 39(4):914–929

    Article  Google Scholar 

  10. Efstratiadis SN, Katsaggelos AK (1999) Adaptive iterative image restoration with reduced computational load. Machine Learning 37(3):297–336. The eleventh annual conference on computational learning theory archive. Kluwer Academic Publishers, Hingham

    Google Scholar 

  11. Kang MG, Katsaggelos AK (1995) General choice of the regularization functional in regularized image restoration. IEEE Trans Image Process 4(5):594–602

    Article  Google Scholar 

  12. Besag J (1986) On the statistical analysis of dirty pictures. J R Stat Soc B 48(3):259–302

    MathSciNet  MATH  Google Scholar 

  13. Molina R, Katsaggelos AK, Mateos J (1999) Bayesian and regularization methods for hyperparameter estimation in image restoration. IEEE Trans Image Process 8(2):231–246

    Article  MathSciNet  Google Scholar 

  14. Andrieu C, de Freitras N, Doucet A, Jordan M (2003) An introduction to MCMC for machine learning. Mach Learn 50:5–43

    Article  Google Scholar 

  15. Ruanaidh JJKÓ, Fitzgerald W (1996) Numerical Bayesian methods applied to signal processing, 1st edn. Springer series in statistics and computing. Springer, New York. ISBN:0-387-94629-2

    Book  Google Scholar 

  16. Gilks W, Richardson S, Spiegelhalter D (eds) (1995) Markov chain Monte Carlo in practice: interdisciplinary statistics. Chapman & Hall, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Bishop .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bishop, T., Favaro, P. (2021). Blind Deconvolution. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-03243-2_771-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03243-2_771-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03243-2

  • Online ISBN: 978-3-030-03243-2

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics