Skip to main content

Technological Challenges of Pediatric MEG and Potential Solutions: The Aston Experience

  • Reference work entry
  • First Online:
Magnetoencephalography

Abstract

Magnetoencephalography (MEG) offers significant opportunities for the localization and characterization of focal and generalized epilepsies, but its potential has so far not been fully exploited, as the evidence for its effectiveness is still anecdotal. This is particularly true for pediatric epilepsy. MEG recordings on school-aged children typically rely on the use of MEG systems that were designed for adults, but children’s smaller head size and stature can cause significant problems. Reduced signal-to-noise ratio when recording from smaller heads, increased movement, reduced sensor coverage of anterior temporal regions, and incomplete insertion into the MEG helmet can all reduce the quality of data collected from children. We summarize these challenges and suggest some practical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramov I, Hainline L, Turkel J, Lemerise E, Smith H, Gordon J, Petry S (1984) Rocket-ship psychophysics. Assessing visual functioning in young children. Invest Ophthalmol Vis Sci 25:1307–1315

    CAS  PubMed  Google Scholar 

  • Adjamian P, Barnes GR, Hillebrand A, Holliday IE, Singh KD, Furlong PL, Harrington E, Barclay CW, Route PJG (2004) Coregistration of magnetoencephalography with magnetic resonance imaging using bite-bar-based fiducials and surface-matching. Clin Neurophysiol 115:691–698

    Article  CAS  Google Scholar 

  • Agirre-Arrizubieta Z, Huiskamp GJ, Ferrier CH, Van Huffelen AC, Leijten FS (2009) Interictal magnetoencephalography and the irritative zone in the electrocorticogram. Brain 132(11):3060–3071

    Article  CAS  Google Scholar 

  • Barry JG, Ferguson MA, Moore DR (2010) Making sense of listening: the imap test battery. J Vis Exp 11:e2139

    Google Scholar 

  • De Jongh A, De Munck JC, Goncalves SI, Ossenblok P (2005) Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios. J Clin Neurophysiol 22:153–158

    Article  Google Scholar 

  • Gaetz W, Cheyne D, Rutka JT, Drake J, Benifla M, Strantzas S, Widjaja E, Holowka S, Tovar-Spinoza Z, Otsubo H, Pang EW (2009) Presurgical localization of primary motor cortex in pediatric patients with brain lesions by the use of spatially filtered magnetoencephalography. Neurosurgery 64:177–185

    Google Scholar 

  • Gaetz W, Otsubo H, Pang EW (2008) Magnetoencephalography for clinical pediatrics: the effect of head positioning on measurement of somatosensory-evoked fields. Clin Neurophysiol 119:1923–1933

    Article  CAS  Google Scholar 

  • Hauser WA (1995) Epidemiology of epilepsy in children. Neurosurg Clin N Am 6:419–429

    Article  CAS  Google Scholar 

  • Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage 16:638–650

    Article  CAS  Google Scholar 

  • Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Luders H (2007) Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain 130:574–584

    Article  Google Scholar 

  • Johnson BW, Crain S, Thornton R, Tesan G, Reid M (2010) Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array. Clin Neurophysiol 121(3):249–340

    Article  Google Scholar 

  • Kaiboriboon K, Nagarajan S, Mantle M, Kirsch HE (2010) Interictal MEG/MSIin intractable mesial temporal lobe epilepsy: spike yield and characterization. Clin Neurophysiol 121(3):325–331

    Article  Google Scholar 

  • Kakisaka Y, Wang ZI, Mosher JC, Dubarry AS, Alexopoulos AV, Enatsu R, Kotagal P, Burgess RC (2012) Clinical evidence for the utility of movement compensation algorithm in magnetoencephalography: successful localization during focal seizure. Epilepsy Res 101(1–2):191–196

    Article  Google Scholar 

  • Kirsch HE, Robinson SE, Mantle M, Nagarajan S (2006) Automated localization of magnetoencephalographic interictal spikes by adaptive spatial filtering. Clin Neurophysiol 117(10):2264–2267

    Article  CAS  Google Scholar 

  • Knowlton RC, Laxer KD, Aminoff MJ, Roberts TP, Wong ST, Rowley HA (1997) Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy. Ann Neurol 42:622–631

    Article  CAS  Google Scholar 

  • Leijten FS, Huiskamp GJ, Hilgersom I, Van Huffelen AC (2003) High-resolution source imaging in mesiotemporal lobe epilepsy: a comparison between MEG and simultaneous EEG. J Clin Neurophysiol 20(4):227–238

    Article  Google Scholar 

  • Lin YY, Shih YH, Hsieh JC, Yu HY, Yiu CH, Yeh TC, Wong TT, Kwan SY, Ho LT, Yen DJ, Wu ZA, Chang MS (2003) Magnetoencephalographic yield of interictal spikes in temporal lobe epilepsy. Comparison with scalp EEG recordings. NeuroImage 19(3):1115–1126

    Article  CAS  Google Scholar 

  • Medvedovsky M, Taulu S, Gaily E, El M, Mäkelä JP, Ekstein D, Kipervasser S, Neufeld MY, Kramer U, Blomstedt G, Fried I, Karppinen A, Veshchev I, Roivainen R, Ben-Zeev B, Goldberg-Stern H, Wilenius J, Paetau R (2012) Sensitivity and specificity of seizure-onset zone estimation by ictal magnetoencephalography. Epilepsia 53(9):1649–1657

    Article  Google Scholar 

  • Nenonen J, Nurminen J, Kičić D, Bikmullina R, Lioumis P, Jousmäki V, Taulu S, Parkkonen L, Putaala M, Kähkönen S (2012) Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography. Clin Neurophysiol 123:2180–2191

    Article  Google Scholar 

  • Okada Y, Pratt K, Atwood C, Mascarenas A, Reineman R, Nurminen J, Paulson D (2006) BabySQUID: a mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment. Rev Sci Instrum 77:1–9

    Article  Google Scholar 

  • Ossenblok P, De Munck JC, Colon A, Drolsbach W, Boon P (2007) Magnetoencephalography is more successful for screening and localizing frontal lobe epilepsy than electroencephalography. Epilepsia 48:2139–2149

    Article  Google Scholar 

  • Robinson SE, Vrba J (1999) Functional neuroimaging by synthetic aperture magnetometry (SAM). In: Yoshimoto T (ed) Recent advances in biomagnetism. Tohoku University Press, Sendai, pp 302–305

    Google Scholar 

  • Snyder RG, Spencer ML, Owings CL, Schneider LW (1975) In: Physical characteristics of children as related to death and injury for consumer product safety design. UM-HSRI-Bi-75-5. Consumer Product Safety Commission (USA). Available via DIALOG. http://Ovrt.Nist.Gov/Projects/Anthrokids/

  • Sutherland ME, Zatorre RJ, Watkins KE, Hervé PY, Leonard G, Pike BG, Witton C, Paus T (2012) Anatomical correlates of dynamic auditory processing: relationship to literacy during early adolescence. NeuroImage 60:1287–1295

    Article  Google Scholar 

  • Wellmer J, Weber B, Urbach H, Reul J, Fernandez GE (2009) Cerebral lesions can impair fMRI-based language lateralization. Epilepsia 50(10):2213–2224

    Article  Google Scholar 

  • Wennberg R, Valiante T, Cheyne D (2011) EEGand MEG in mesial temporal lobe epilepsy: where do the spikes really come from? Clin Neurophysiol 122(7):1295–1313

    Article  Google Scholar 

  • Wilson HS (2004) Continuous head-localization and data correction in a whole-cortex MEG sensor. Neurol Clin Neurophysiol 30:56

    Google Scholar 

  • Woods W, Gouws A, Green GGR (2012) Stereo camera MEG-MRI coregistration and head tracking. Poster presented at Biomag 2012, 18th international conference on biomagnetism, Paris, 26–30 Aug 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Seri .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Witton, C., Furlong, P.L., Seri, S. (2019). Technological Challenges of Pediatric MEG and Potential Solutions: The Aston Experience. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-00087-5_30

Download citation

Publish with us

Policies and ethics