Skip to main content

Analyzing MEG Data with Granger Causality: Promises and Pitfalls

  • Reference work entry
  • First Online:
Magnetoencephalography

Abstract

In this chapter we begin by introducing the basic idea of Granger causality and discussing its applications to local field potential data. We then proceed to comment on recent results of applying Granger causality to MEG data. Recognizing that Granger causality is frequently used to examine neural activity recorded during stimulus processing, we point out the adverse effects of the inevitable trial-to-trial variability of stimulus-evoked responses on Granger causality estimation. We end the chapter by discussing the future prospects of using Granger causality in basic and clinical neuroscience research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen P, Andersson SA (1968) Physiological basis of the alpha rhythm. Appleton-Century-Crofts, New York

    Google Scholar 

  • Baker SN, Pinches EM, Lemon RN (2003) Synchronization in monkey motor cortex during a precision grip task. II. Effect of oscillatory activity on corticospinal output. J Neurophysiol 89(4):1941–1953

    Article  Google Scholar 

  • Berger H (1929) Ãœber das Elektroencephalogramm des menschen (On the electroencephalogram of man). Arch Psychiatr Nervenkr 87:527–570

    Article  Google Scholar 

  • Bollimunta A, Chen Y, Schroeder CE, Ding M (2008) Neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques. J Neurosci 28(40):9976–9988

    Article  CAS  Google Scholar 

  • Bollimunta A, Chen Y, Schroeder CE, Ding M (2009) Characterizing oscillatory cortical networks with Granger causality. In: Rubin J, Josic K, Matias M, Romo R (eds) Coherent behavior in neuronal networks. Springer, New York, pp 169–189

    Chapter  Google Scholar 

  • Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci U S A 101(26):9849–9854

    Article  CAS  Google Scholar 

  • Chen Y, Bressler SL, Ding M (2006) Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data. J Neurosci Methods 150(2):228–237

    Article  Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1):55–67

    Article  CAS  Google Scholar 

  • Ding M, Chen Y, Bressler SL (2006) Granger causality: basic theory and application to neuroscience. In: Winterhalder M, Schelter B, Timmer J (eds) Handbook of time series analysis. Wiley, Berlin, pp 437–460

    Chapter  Google Scholar 

  • Gazzaniga MS, Ivry RB, Mangun GR (2002) Cognitive neuroscience. Norton and Company, New York

    Google Scholar 

  • Geweke J (1982) Measurement of linear-dependence and feedback between multiple time-series. J Am Stat Assoc 77(378):304–313

    Article  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159(10):1642–1652

    Article  Google Scholar 

  • Gow DW Jr, Segawa JA, Ahlfors SP, Lin FH (2008) Lexical influences on speech perception: a Granger causality analysis of MEG and EEG source estimates. NeuroImage 43(3):614–623

    Article  Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424–438

    Article  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography – theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497

    Article  Google Scholar 

  • Liu Y, Huang H, McGinnis M, Keil A, Ding M (2012) Neural substrate of the late positive potential in emotional processing. J Neurosci 32(42):14563–14572

    Article  CAS  Google Scholar 

  • Moratti S, Saugar C, Strange BA (2011) Prefrontal-occipitoparietal coupling underlies late latency human neuronal responses to emotion. J Neurosci 31(47):17278–17286

    Article  CAS  Google Scholar 

  • Ploner M, Schoffelen JM, Schnitzler A, Gross J (2009) Functional integration within the human pain system as revealed by Granger causality. Hum Brain Mapp 30(12):4025–4032

    Article  Google Scholar 

  • Rothwell JC, Traub MM, Day BL, Obeso JA, Thomas PK, Marsden CD (1982) Manual motor-performance in a deafferented man. Brain 105(3):515–542

    Article  Google Scholar 

  • Rushworth MFS, Nixon PD, Passingham RE (1997) Parietal cortex and movement 1. Movement selection and reaching. Exp Brain Res 117(2):292–310

    Article  CAS  Google Scholar 

  • Schoffelena JM, Hulténa A, Lama N, Marquanda AF, Uddéna J, Hagoort P (2017) Frequency-specific directed interactions in the human brain network for language. Proc Natl Acad Sci 114(3):8083–8088

    Article  CAS  Google Scholar 

  • Silva LR, Amitai Y, Connors BW (1991) Intrinsic oscillations of neocortex generated by layer-5 pyramidal neurons. Science 251(4992):432–435

    Article  CAS  Google Scholar 

  • Trongnetrpunya A, Nandi B, Kang D, Kocsis B, Schroeder CE, Ding M (2016) Assessing Granger causality in electrophysiological data: the importance of bipolar derivations. Frontiers in Systems Neurosci 9:189 1–11 https://doi.org/10.3389/fnsys.2015.00189

  • Wang X, Ding M (2011) Relation between P300 and event-related theta-band synchronization: a single-trial analysis. Clin Neurophysiol 122(5):916–924

    Article  Google Scholar 

  • Wang X, Chen Y, Ding M (2008) Estimating Granger causality after stimulus onset: a cautionary note. NeuroImage 41(3):767–776

    Article  Google Scholar 

  • Wiener N (1956) The theory of prediction, Chap 8. In: Beckenbach EF (ed) Modern mathematics for engineers. McGraw-Hill, New York

    Google Scholar 

  • Xu L, Stoica P, Li J, Bressler SL, Shao X, Ding M (2009) ASEO: a method for the simultaneous estimation of single-trial event-related potentials and ongoing brain activities. IEEE Trans Biomed Eng 56:111–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingzhou Ding .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ding, M., Wang, C. (2019). Analyzing MEG Data with Granger Causality: Promises and Pitfalls. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-030-00087-5_15

Download citation

Publish with us

Policies and ethics