Pathophysiology of Antiepileptic Drug Refractoriness

  • Heidrun Potschka
  • Eleonora Aronica
Reference work entry

Introduction and Definitions

Drug refractoriness is a serious problem in the treatment of patients with epilepsy with devastating consequences on the patient’s quality of life. In about one-third of epileptic patients severe seizures persist despite syndrome-appropriate medical treatment (French 2007). Prediction of refractory epilepsy is a complex issue for the physician managing patients with epilepsy, because multiple mechanisms appear to contribute to this clinical phenomenon (Löscher and Potschka 2005; Löscher et al. 2009). Thus, understanding drug refractoriness in epilepsy represents a challenge for both experimental and clinical research.

This chapter will briefly address the experimental and clinical evidence on mechanisms underlying drug refractoriness and factors that regulate them. The emphasis will be on the two major concepts that have been put forward to explain drug refractoriness: the target- and the transporter-hypothesis (Loscher and Potschka 2005; Remy and Beck 2006...


GABAA Receptor Temporal Lobe Epilepsy Efflux Transporter Focal Cortical Dysplasia Refractory Epilepsy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


Antiepileptic drugs


Blood–brain barrier


Breast-cancer resistance protein


Focal cortical dysplasia


Hippocampal sclerosis


Malformations of cortical development


Magnetic resonance


Multidrug resistance-associated proteins


Temporal lobe epilepsy


Volumes of interest


  1. Ak H, Ay B, Tanriverdi T et al. (2007) Expression and cellular distribution of multidrug resistance-related proteins in patients with focal cortical dysplasia. Seizure 16:493–503CrossRefPubMedGoogle Scholar
  2. Aronica E, Gorter JA, Jansen GH et al. (2003) Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors. Neuroscience 118:417–429CrossRefPubMedGoogle Scholar
  3. Aronica E, Gorter JA, Ramkema M et al. (2004) Expression and cellular distribution of multidrug resistance-related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia 45:441–451.CrossRefPubMedGoogle Scholar
  4. Avoli M, Luvel J, Pumain R, Kohling R (2005) Cellular and molecular mechanisms of epilepsy in the human brain. Prog Neurobiol 77:166–200CrossRefPubMedGoogle Scholar
  5. Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H (2008) Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol 73:1444–1453.CrossRefPubMedGoogle Scholar
  6. Beck H (2007) Plasticity of antiepileptic drug targets. Epilepsia 48(Suppl 1):14–18CrossRefPubMedGoogle Scholar
  7. Boer K, Troost D, Jansen F, Nellist M, van den Ouweland AM, Geurts JJ, Spliet WG, Crino P, Aronica E (2008) Clinicopathological and immunohistochemical findings in an autopsy case of tuberous sclerosis complex. Neuropathology 28:577–590PubMedGoogle Scholar
  8. Brandt C, Bethmann K, Gastens AM, Loscher W (2006) The multidrug transporter hypothesis of drug resistance in epilepsy: proof-of principle in a rat model of temporal lobe epilepsy. Neurobiol Dis 24:202–211CrossRefPubMedGoogle Scholar
  9. Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R (2002) On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science 298:1418–1421CrossRefPubMedGoogle Scholar
  10. Cucullo L, Hossain M, Rapp E, Manders T, Marchi N, Janigro D (2007) Development of a humanized in vitro blood–brain barrier model to screen for brain penetration of antiepileptic drugs. Epilepsia 48:505–516CrossRefPubMedGoogle Scholar
  11. Dombrowski SM, Desai SY, Marroni M, Cucullo L, Goodrich K, Bingaman W, Mayberg MR, Bengez L, Janigro D (2001) Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501–1506CrossRefPubMedGoogle Scholar
  12. French JA (2007) Refractory epilepsy: clinical overview. Epilepsia 48(Suppl 1):3–7CrossRefPubMedGoogle Scholar
  13. Hoffmann K, Gastens AM, Volk HA, Loscher W (2006) Expression of the multidrug transporter MRP2 in the blood-brain barrier after pilocarpine-induced seizures in rats. Epilepsy Res 69:1–14CrossRefPubMedGoogle Scholar
  14. Kubota H, Ishihara H, Langmann T, Schmitz G, Stieger B, Wieser HG, Yonekawa Y, Frei K (2006) Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res 68:213–228CrossRefPubMedGoogle Scholar
  15. Langer O, Bauer M, Hammers A, Karch R, Pataraia E, Koepp MJ, Abrahim A, Luurtsema G, Brunner M, Sunder-Plassmann R, Zimprich F, Joukhadar C, Gentzsch S, Dudczak R, Kletter K, Muller M, Baumgartner C (2007) Pharmacoresistance in epilepsy: a pilot PET study with the P-glycoprotein substrate R-[(11)C]verapamil. Epilepsia 48:1774–1784CrossRefPubMedGoogle Scholar
  16. Lazarowski A, Lubieniecki F, Camarero S, Pomata H, Bartuluchi M, Sevlever G, Taratuto AL (2004) Multidrug resistance proteins in tuberous sclerosis and refractory epilepsy. Pediatr Neurol, 30:102–106.CrossRefPubMedGoogle Scholar
  17. Liu X, Yang Z, Yang J, Yang H (2007) Increased P-glycoprotein expression and decreased phenobarbital distribution in the brain of pentylenetetrazole-kindled rats. Neuropharmacology, 53:657–663.CrossRefPubMedGoogle Scholar
  18. Loscher W, Klotz U, Zimprich F, Schmidt D (2009) The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 50(1): 1–23CrossRefPubMedGoogle Scholar
  19. Loscher W, Potschka H (2005) Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog Neurobiol 76:22–76CrossRefPubMedGoogle Scholar
  20. Luna-Tortos C, Fedrowitz M, Loscher W (2008) Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 55:1364–1375CrossRefPubMedGoogle Scholar
  21. Marchi N, Guiso G, Rizzi M, Pirker S, Novak K, Czech T, Baumgartner C, Janigro D, Caccia S, Vezzani A (2005) A pilot study on brain-to-plasma partition of 10,11-dyhydro-10-hydroxy-5H-dibenzo(b,f)azepine-5-carboxamide and MDR1 brain expression in epilepsy patients not responding to oxcarbazepine. Epilepsia 46:1613–1619CrossRefPubMedGoogle Scholar
  22. Pekcec A, Unkruer B, Stein V, Bankstahl JP, Soerensen J, Tipold A, Baumgartner W, Potschka H (2009) Over-expression of P-glycoprotein in the canine brain following spontaneous status epilepticus. Epilepsy Res 83:144–151CrossRefPubMedGoogle Scholar
  23. Remy S, Beck H (2006) Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 129:18–35CrossRefPubMedGoogle Scholar
  24. Remy S, Gabriel S, Urban BW, Dietrich D, Lehmann TN, Elger CE, Heinemann U, Beck H (2003) A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 53:469–479CrossRefPubMedGoogle Scholar
  25. Rizzi M, Caccia S, Guiso G et al. (2002) Limbic seizures induce P-glycoprotein in rodent brain: functional implications for pharmacoresistance. J Neurosci 22:5833–5839PubMedGoogle Scholar
  26. Schaub C, Uebachs M, Beck H (2007) Diminished response of CA1 neurons to antiepileptic drugs in chronic epilepsy. Epilepsia 48:1339–1350CrossRefPubMedGoogle Scholar
  27. Sun GC, Werkman TR, Wadman WJ (2006) Kinetic changes and modulation by carbamazepine on voltage-gated sodium channels in rat CA1 neurons after epilepsy. Acta Pharmacol Sin 27:1537–1546CrossRefPubMedGoogle Scholar
  28. Tate SK, Singh R, Hung CC, Tai JJ, Depondt C, Cavalleri GL, Sisodiya SM, Goldstein DB, Liou HH (2006) A common polymorphism in the SCN1A gene associates with phenytoin serum levels at maintenance dose. Pharmacogenet Genomics 16:721–726CrossRefPubMedGoogle Scholar
  29. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C (1995) MDR1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia 36:1–6CrossRefPubMedGoogle Scholar
  30. van Vliet E, Aronica E, Redeker S, Marchi N, Rizzi M, Vezzani A, Gorter J (2004) Selective and persistent upregulation of mdr1b mRNA and P-glycoprotein in the parahippocampal cortex of chronic epileptic rats. Epilepsy Res 60:203–213CrossRefPubMedGoogle Scholar
  31. van Vliet EA, van Schaik R, Edelbroek PM, Redeker S, Aronica E, Wadman WJ, Marchi N, Vezzani A, Gorter JA (2006) Inhibition of the multidrug transporter P-glycoprotein improves seizure control in phenytoin-treated chronic epileptic rats. Epilepsia 47:672–680CrossRefPubMedGoogle Scholar
  32. Volk HA, Potschka H, Loscher W (2004) Increased expression of the multidrug transporter P-glycoprotein in limbic brain regions after amygdala-kindled seizures in rats. Epilepsy Res 58:67–79CrossRefPubMedGoogle Scholar
  33. Vreugdenhil M, van Veelen CW, van Rijen PC, Lopes da Silva FH,  Wadman WJ (1998) Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistant temporal lobe epilepsy. Epilepsy Res 32:309–320CrossRefPubMedGoogle Scholar
  34. Vreugdenhil M, Wadman WJ (1999) Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia 40:1512–1522CrossRefPubMedGoogle Scholar
  35. Wong M (2008) Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation. Epilepsia 49:8–21CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Heidrun Potschka
    • 1
  • Eleonora Aronica
    • 2
    • 3
  1. 1.Institute of Pharmacology, Toxicology, and PharmacyLudwig-Maximilians-UniversityMunichGermany
  2. 2.Department of (neuro)pathologyAcademic Medical CenterAmsterdamThe Netherlands
  3. 3.Epilepsy Institute in The Netherlands (SEIN)HeemstedeThe Netherlands

Personalised recommendations