Epileptogenesis and Febrile Seizures

  • James G. HeidaEmail author
  • Morris H. Scantlebury
Reference work entry

Introduction and Definitions

Febrile seizures occur in children aged 2 months to 5 years and are caused by fever. Although most cases are considered to have no residual effects on the brain, there are certain cases in which individuals go on to develop epilepsy later in life. This chapter discusses factors that contribute to the process of epileptogenesis after febrile seizures. In this review, both basic science and clinical data are presented to elucidate the role of several key factors involved in the development of epilepsy after a febrile seizure.

Etiology or Methods

Febrile seizures are the most common form of seizure in the pediatric population affecting 2–5% of children in North America between the ages of 2 months and 5 years (Berg and Shinnar 1996a). These seizures are precipitated by a febrile illness that can arise from viral or bacterial infections accompanied by a fever of greater than or equal to 38.3°C. Febrile seizures are heterogeneous and can be classified into...


AMPA Receptor Temporal Lobe Epilepsy Febrile Illness Febrile Seizure Mesial Temporal Sclerosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, Malenka RC (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285CrossRefPubMedGoogle Scholar
  2. Berg AT, Shinnar S (1996a) Unprovoked seizures in children with febrile seizures: short-term outcome. Neurology 47:562–568PubMedGoogle Scholar
  3. Berg AT, Shinnar S (1996b) Complex febrile seizures. Epilepsia 37:126–133CrossRefPubMedGoogle Scholar
  4. Dube CM, Brewster AL, Baram TZ (2009) Febrile seizures: mechanisms and relationship to epilepsy. Brain Dev 31:366–371CrossRefPubMedGoogle Scholar
  5. Falconer M (1971) Genetic and related etiological factors in temporal lobe epilepsy: a review. Epilepsia 12:13–31CrossRefPubMedGoogle Scholar
  6. Falconer MA, Taylor DC (1968) Surgical treatment of drug-resistant epilepsy due to mesial temporal sclerosis. Etiology and significance. Arch Neurol 19:353–361PubMedGoogle Scholar
  7. Galic MA, Riazi K, Heida JG, Mouihate A, Fournier NM, Spencer SJ, Kalynchuk LE, Teskey GC, Pittman QJ (2008) Postnatal inflammation increases seizure susceptibility in adult rats. J Neurosci 28:6904–6913CrossRefPubMedGoogle Scholar
  8. Gibbs SA, Scantlebury MH, Awad P, Lema P, Essouma JB, Parent M, Descarries L, Carmant L (2008) Hippocampal atrophy and abnormal brain development following a prolonged hyperthermic seizure in the immature rat with a focal neocortical lesion. Neurobiol Dis 32:176–182CrossRefPubMedGoogle Scholar
  9. Heida JG, Boisse L, Pittman QJ (2004) Lipopolysaccharide-induced febrile convulsions in the rat: short-term sequelae. Epilepsia 45:1317–1329CrossRefPubMedGoogle Scholar
  10. Heida JG, Moshe SL, Pittman QJ (2009) The role of interleukin-1beta in febrile seizures. Brain Dev 31:388–393CrossRefPubMedGoogle Scholar
  11. Helminen M, Vesikari T (1990) Increased interleukin-1 (IL-1) production from LPS-stimulated peripheral blood monocytes in children with febrile convulsions. Acta Paediatr Scand 79:810–816CrossRefPubMedGoogle Scholar
  12. Huang CC, Chang YC (2009) The long-term effects of febrile seizures on the hippocampal neuronal plasticity – clinical and experimental evidence. Brain Dev 31:383–387CrossRefPubMedGoogle Scholar
  13. Matsuo M, Sasaki K, Ichimaru T, Nakazato S, Hamasaki Y (2006) Increased IL-1beta production from dsRNA-stimulated leukocytes in febrile seizures. Pediatr Neurol 35:102–106CrossRefPubMedGoogle Scholar
  14. Scantlebury MH, Ouellet PL, Psarropoulou C, Carmant L (2004) Freeze lesion-induced focal cortical dysplasia predisposes to atypical hyperthermic seizures in the immature rat. Epilepsia 45:592–600CrossRefPubMedGoogle Scholar
  15. Scantlebury MH, Gibbs SA, Foadjo B, Lema P, Psarropoulou C, Carmant L (2005) Febrile seizures in the predisposed brain: a new model of temporal lobe epilepsy. Ann Neurol 58:41–49CrossRefPubMedGoogle Scholar
  16. Shinnar S (2003) Febrile seizures and mesial temporal sclerosis. Epilepsy Curr 3:115–118CrossRefPubMedGoogle Scholar
  17. Shinnar S, Glauser TA (2002) Febrile seizures. J Child Neurol 17 (Suppl 1):S44–S52CrossRefPubMedGoogle Scholar
  18. Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228CrossRefPubMedGoogle Scholar
  19. Toth Z, Yan XX, Haftoglou S, Ribak CE, Baram TZ (1998) Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 18:4285–4294PubMedGoogle Scholar
  20. VanLandingham KE, Heinz ER, Cavazos JE, Lewis DV (1998) Magnetic resonance imaging evidence of hippocampal injury after prolonged focal febrile convulsions. Ann Neurol 43:413–426CrossRefPubMedGoogle Scholar
  21. Virta M, Hurme M, Helminen M (2002) Increased plasma levels of pro- and anti-inflammatory cytokines in patients with febrile seizures. Epilepsia 43:920–923CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  1. 1.Department of SurgeryDivision of Neurosurgery Texas A&M University Health Science Center College of Medicine  
  2. 2.Neuroscience Institute Scott & White Memorial Hospital  
  3. 3.Central Texas Veterans Health Care SystemTexasUSA
  4. 4.Department of NeurologyAlbert Einstein College of Medicine and Montefiore Medical Center, BronxNew YorkUSA

Personalised recommendations