Genetic Animal Models of Epileptic Seizures

  • Holger Lerche
  • Steven Petrou
Reference work entry

Introduction and Definitions

Animal models provide crucial tools to study the pathophysiology of human brain diseases, since they allow parallel investigations on the molecular, cellular, and systemic levels in a way that is not possible in humans. Since there is a huge amount of animal models with genetic modifications that develop epilepsy, they cannot all be summarized in this chapter. Therefore, “genetic animal models” are considered here only as models for human idiopathic epilepsies. These epilepsies have a major genetic background and are “pure” epilepsies, which do not occur secondary to another disease such as a brain lesion. We differentiate between the following types of models:
  1. 1.

    Spontaneously/naturally occurring animal models resembling the human phenotype. They can be monogenic (with a known mutation), or polygenic.

  2. 2.

    Gene-targeted models carrying an engineered mutation in their genome causing epileptic seizures. Depending on the type of genetic modification, these...


Absence Epilepsy Seizure Susceptibility Nucleus Reticularis Thalamus Juvenile Myoclonic Epilepsy Spontaneous Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aridon P, Marini C, Di Resta C, Brilli E, De Fusco M, Politi F, Parrini E, Manfredi I, Pisano T, Pruna D, Curia G, Cianchetti C, Pasqualetti M, Becchetti A, Guerrini R, Casari G (2006) Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am J Hum Genet 79(2):342–350CrossRefPubMedGoogle Scholar
  2. Budde T, Caputi L, Kanyshkova T, Staak R, Abrahamczik C, Munsch T, Pape HC (2005) Impaired regulation of thalamic pacemaker channels through an imbalance of subunit expression in absence epilepsy. J Neurosci 25(43):9871–9882CrossRefPubMedGoogle Scholar
  3. Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243CrossRefPubMedGoogle Scholar
  4. Chiu C, Reid CA, Tan HO, Davies PJ, Single FN, Koukoulas I, Berkovic SF, Tan SS, Sprengel R, Jones MV, Petrou S (2008) Developmental impact of a familial GABAA receptor epilepsy mutation. Ann Neurol 64(3):284–293CrossRefPubMedGoogle Scholar
  5. Crestani F, Lorez M, Baer K, Essrich C, Benke D, Laurent JP, Belzung C, Fritschy JM, Lüscher B, Mohler H (1999) Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat Neurosci 2:833–839CrossRefPubMedGoogle Scholar
  6. Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C (1998) Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 55(1):27–57CrossRefPubMedGoogle Scholar
  7. Ernst WL, Zhang Y, Yoo JW, Ernst SJ, Noebels JL (2009) Genetic enhancement of thalamocortical network activity by elevating alpha 1g-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 29(6):1615–1625CrossRefPubMedGoogle Scholar
  8. Fedi M, Berkovic SF, Macdonell RA, Curatolo JM, Marini C, Reutens DC (2008) Intracortical hyperexcitability in humans with a GABAA receptor mutation. Cereb Cortex 18(3):664–669CrossRefPubMedGoogle Scholar
  9. Frankel WN (2009) Genetics of complex neurological disease: challenges and opportunities for modeling epilepsy in mice and rats. Trends Genet 25(8):361–367CrossRefPubMedGoogle Scholar
  10. Frankel WN, Taylor L, Beyer B, Tempel BL, White HS (2001) Electroconvulsive thresholds of inbred mouse strains. Genomics 74:306–312CrossRefPubMedGoogle Scholar
  11. Fuller JL, Sjursen FH (1967) Audiogenic seizures in eleven mouse strains. J Hered 58:135–140PubMedGoogle Scholar
  12. Gauguier D, van Luijtelaar G, Bihoreau MT, Wilder SP, Godfrey RF, Vossen J, Coenen A, Cox RD (2004) Chromosomal mapping of genetic loci controlling absence epilepsy phenotypes in the WAG/Rij rat. Epilepsia 45(8):908–915CrossRefPubMedGoogle Scholar
  13. Heron SE, Khosravani H, Varela D, Bladen C, Williams TC, Newman MR, Scheffer IE, Berkovic SF, Mulley JC, Zamponi GW (2007) Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 62(6):560–568CrossRefPubMedGoogle Scholar
  14. Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha1G T-type Ca(2+)channels. Neuron 31:35–45CrossRefPubMedGoogle Scholar
  15. Klaassen A, Glykys J, Maguire J, Labarca C, Mody I, Boulter J (2006) Seizures and enhanced cortical GABAergic inhibition in two mouse models of human autosomal dominant nocturnal frontal lobe epilepsy. Proc Natl Acad Sci USA 103(50):19152–19157CrossRefPubMedGoogle Scholar
  16. Kosobud AE, Cross SJ, Crabbe JC (1992) Neural sensitivity to pentylenetetrazol convulsions in inbred and selectively bred mice. Brain Res 592(1–2):122–128CrossRefPubMedGoogle Scholar
  17. Ludwig A, Budde T, Stieber J, Moosmang S, Wahl C, Holthoff K, Langebartels A, Wotjak C, Munsch T, Zong X, Feil S, Feil R, Lancel M, Chien KR, Konnerth A, Pape HC, Biel M, Hofmann F (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. EMBO J 22:216–224CrossRefPubMedGoogle Scholar
  18. Manning JP, Richards DA, Leresche N, Crunelli V, Bowery NG (2004) Cortical-area specific block of genetically determined absence seizures by ethosuximide. Neuroscience 123(1):5–9CrossRefPubMedGoogle Scholar
  19. Meeren HK, Pijn JP, van Luijtelaar EL, Coenen AM, Lopes da Silva FH (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22:1480–1495PubMedGoogle Scholar
  20. Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A (2005) Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol 62(3):371–376CrossRefPubMedGoogle Scholar
  21. Peters HC, Hu H, Pongs O, Storm JF, Isbrandt D (2005) Conditional transgenic suppression of M channels in mouse brain reveals functions in neuronal excitability, resonance and behavior. Nat Neurosci 8(1):51–60CrossRefPubMedGoogle Scholar
  22. Powell KL, Cain SM, Ng C, Sirdesai S, David LS, Kyi M, Garcia E, Tyson JR, Reid CA, Bahlo M, Foote SJ, Snutch TP, O’Brien TJ (2009) A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 29:371–380CrossRefPubMedGoogle Scholar
  23. Rudolf G, Thérèse Bihoreau M, Godfrey RF, Wilder SP, Cox RD, Lathrop M, Marescaux C, Gauguier D (2004) Polygenic control of idiopathic generalized epilepsy phenotypes in the genetic absence rats from Strasbourg (GAERS). Epilepsia 45(4):301–308CrossRefPubMedGoogle Scholar
  24. Scheffer IE, Bhatia KP, Lopes-Cendes I, Fish DR, Marsden CD, Andermann F, Andermann E, Desbiens R, Cendes F, Manson JI et al. (1994) Autosomal dominant frontal epilepsy misdiagnosed as sleep disorder. Lancet 343(8896):515–517CrossRefPubMedGoogle Scholar
  25. Scheffer IE, Jones L, Pozzebon M, Howell RA, Saling MM, Berkovic SF (1995) Autosomal dominant rolandic epilepsy and speech dyspraxia: a new syndrome with anticipation. Ann Neurol 38(4):633–642CrossRefPubMedGoogle Scholar
  26. Singh NA, Otto JF, Dahle EJ, Pappas C, Leslie JD, Vilaythong A, Noebels JL, White HS, Wilcox KS, Leppert MF (2008) Mouse models of human KCNQ2 and KCNQ3 mutations for benign familial neonatal convulsions show seizures and neuronal plasticity without synaptic reorganization. J Physiol 586(14):3405–3423CrossRefPubMedGoogle Scholar
  27. Sutor B, Zolles G (2001) Neuronal nicotinic acetylcholine receptors and autosomal dominant nocturnal frontal lobe epilepsy: a critical review. Pflugers Arch 442(5):642–651CrossRefPubMedGoogle Scholar
  28. Tan HO, Reid CA, Single FN, Davies PJ, Chiu C, Murphy S, Clarke AL, Dibbens L, Krestel H, Mulley JC, Jones MV, Seeburg PH, Sakmann B, Berkovic SF, Sprengel R, Petrou S (2007) Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc Natl Acad Sci 104:17536–17541CrossRefPubMedGoogle Scholar
  29. Tsakiridou E, Bertollini L, de Curtis M, Avanzini G, Pape HC (1995) Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 15(4):3110–3117PubMedGoogle Scholar
  30. Vitko I, Chen Y, Arias JM, Shen Y, Wu XR, Perez-Reyes E (2005) Functional characterization and neuronal modeling of the effects of childhood absence epilepsy variants of CACNA1H, a T-type calcium channel. J Neurosci 25(19):4844–4855CrossRefPubMedGoogle Scholar
  31. Wallace RH, Marini C, Petrou S, Harkin LA, Bowser DN, Panchal RG, Williams DA, Sutherland GR, Mulley JC, Scheffer IE, Berkovic SF (2001) Mutant GABA(A) receptor gamma2-subunit in childhood absence epilepsy and febrile seizures. Nat Genet 28(1):49–52CrossRefPubMedGoogle Scholar
  32. Watanabe H, Nagata E, Kosakai A, Nakamura M, Yokoyama M, Tanaka K, Sasai H (2000) Disruption of the epilepsy KCNQ2 gene results in neural hyperexcitability. J Neurochem 75(1):28–33CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Holger Lerche
    • 1
  • Steven Petrou
    • 2
  1. 1.Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity Hospital TübingenTübingenGermany
  2. 2.Florey Neuroscience Institute, Centre for NeuroscienceUniversity of MelbourneVictoriaAustralia

Personalised recommendations