Pathophysiology of Catastrophic Epileptic Syndromes

  • Morris H. Scantlebury
Reference work entry

Short Description

Catastrophic epilepsies are a group of age-related epileptic syndromes characterized by a variety of behavioral seizure manifestations, malignant EEG patterns, and dismal outcomes including profound psychomotor arrest or regression. They can either be symptomatic or cryptogenic in origin and the etiology may be acquired or genetically based. The prognosis is grave as many patients progress to develop other intractable seizure types, severe cognitive impairments, and even death often independent of the underlying etiology. Because the catastrophic epilepsies are associated with devastating outcomes, it is important to improve the understanding of the pathophysiological substrates underlying these conditions. This is dependent on the development of novel, syndrome specific, animal models systems that can be used to study mechanisms and develop safe, effective, nontoxic treatments. This review will focus on the leading hypotheses governing the mechanisms for seizure...


Corticotrophin Release Hormone GABAB Receptor Infantile Spasm Epileptic Encephalopathy Tonic Seizure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Supported by NIH NINDS grants NS20253, NS045243, NS58303, NS62947, and grants from the International Rett Syndrome Foundation and PACE.


  1. Aicardi J, Goutieres F (1978) Neonatal myoclonic encephalopathy (author’s transl). Rev Electroencephalogr Neurophysiol Clin 8:99–101CrossRefPubMedGoogle Scholar
  2. Asano E, Juhasz C, Shah A, Muzik O, Chugani DC, Shah J, Sood S, Chugani HT (2005) Origin and propagation of epileptic spasms delineated on electrocorticography. Epilepsia 46:1086–1097CrossRefPubMedGoogle Scholar
  3. Baram TZ, Schultz L (1991) Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Brain Res Dev Brain Res 61:97–101CrossRefPubMedGoogle Scholar
  4. Bingham, PM, Spinner, NB, Sovinsky, L, Zackai, EH, Chance, PF (1996) Infantile spasms associated with proximal duplication of chromosome 15q. Pediatr Neurol 15:163–165CrossRefPubMedGoogle Scholar
  5. Brunson KL, Eghbal-Ahmadi M, Baram TZ (2001) How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis. Brain Dev 23:533–538CrossRefPubMedGoogle Scholar
  6. Burnham WM (1985) Core mechanisms in generalized convulsions. Fed Proc 44:2442–2445PubMedGoogle Scholar
  7. Caraballo R, Cersosimo R, Intruvini S, Pociecha J, Fejerman N (1997) West’s syndrome in patients with cerebral paralysis and periventricular leukomalacia: a good response to treatment. Rev Neurol 25:1362–1364PubMedGoogle Scholar
  8. Chudomelova L, Scantlebury MH, Raffo E, Coppola A, Betancourth D, Galanopoulou AS (2010) Modeling new therapies for infantile spasms. Epilepsia (in press)Google Scholar
  9. Chugani HT, Shewmon DA, Sankar R, Chen BC, Phelps ME (1992) Infantile spasms: II. Lenticular nuclei and brain stem activation on positron emission tomography. Ann Neurol 31:212–219CrossRefPubMedGoogle Scholar
  10. Cortez MA, Shen L, Wu Y, Aleem IS, Trepanier CH, Sadeghnia HR, Ashraf A, Kanawaty A, Liu CC, Stewart L, Snead OC, 3rd (2009) Infantile spasms and Down syndrome: a new animal model. Pediatr Res 65:499–503CrossRefPubMedGoogle Scholar
  11. Djukic A, Lado FA, Shinnar S, Moshe SL (2006) Are early myoclonic encephalopathy (EME) and the Ohtahara syndrome (EIEE) independent of each other? Epilepsy Res 70(Suppl 1):S68–S76CrossRefPubMedGoogle Scholar
  12. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev 3:79–83CrossRefPubMedGoogle Scholar
  13. Dulac O, Feingold J, Plouin P, Chiron C, Pajot N, Ponsot G (1993) Genetic predisposition to West syndrome. Epilepsia 34:732–737CrossRefPubMedGoogle Scholar
  14. Galanopoulou AS (2007) Developmental patterns in the regulation of chloride homeostasis and GABA(A) receptor signaling by seizures. Epilepsia 48(Suppl 5):14–18CrossRefPubMedGoogle Scholar
  15. Hayashi M, Itoh M, Araki S, Kumada S, Tanuma N, Kohji T, Kohyama J, Iwakawa Y, Satoh J, Morimatsu Y (2000) Immunohistochemical analysis of brainstem lesions in infantile spasms. Neuropathology 20:297–303CrossRefPubMedGoogle Scholar
  16. Higuchi Y, Maihara T, Hattori H, Furusho K, Okazawa H, Ishizu K, Yonekura Y (1997) (18F)-fluorodeoxyglucose-positron emission tomography findings in infants with severe periventricular leukomalacia and hypsarrhythmia. Eur J Pediatr 156:236–238CrossRefPubMedGoogle Scholar
  17. Hrachovy RA, Frost JD Jr (2003) Infantile epileptic encephalopathy with hypsarrhythmia (infantile spasms/West syndrome). J Clin Neurophysiol 20:408–425CrossRefPubMedGoogle Scholar
  18. Kabova R, Liptakova S, Slamberova R, Pometlova M, Velisek L (1999) Age-specific N-methyl-D-aspartate-induced seizures: perspectives for the West syndrome model. Epilepsia 40:1357–1369CrossRefPubMedGoogle Scholar
  19. Kagawa K, Chugani DC, Asano E, Juhasz C, Muzik O, Shah A, Shah J, Sood S, Kupsky WJ, Mangner TJ, Chakraborty PK, Chugani HT (2005) Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C]methyl-L-tryptophan positron emission tomography (PET). J Child Neurol 20:429–438CrossRefPubMedGoogle Scholar
  20. Karvelas G, Lortie A, Scantlebury MH, Duy PT, Cossette P, Carmant L (2009) A retrospective study on aetiology based outcome of infantile spasms. Seizure 18:197–201CrossRefPubMedGoogle Scholar
  21. Kubova H, Mares P (2010) Vigabatrin but not valproate prevents development of age-specific flexion seizures induced by N-methyl-d-aspartate (NMDA) in immature rats. Epilepsia 51(3):469–472CrossRefGoogle Scholar
  22. Lado FA, Moshe SL (2002) Role of subcortical structures in the pathogenesis of infantile spasms: what are possible subcortical mediators? Int Rev Neurobiol 49:115–140CrossRefPubMedGoogle Scholar
  23. Lee CL, Frost JD Jr, Swann JW, Hrachovy RA (2008) A new animal model of infantile spasms with unprovoked persistent seizures. Epilepsia 49:298–307CrossRefPubMedGoogle Scholar
  24. Mackay MT, Weiss SK, Adams-Webber T, Ashwal S, Stephens D, Ballaban-Gill K, Baram TZ, Duchowny M, Hirtz D, Pellock JM, Sheilds WD, Shinnar S, Wyllie E, Snead OC (2004) Practise parameter: Medical treatment of infantile spasms. Neurology 62:1668–1681PubMedGoogle Scholar
  25. Mares P, Velisek L (1992) N-methyl-D-aspartate (NMDA)-induced seizures in developing rats. Brain Res Dev Brain Res 65:185–189CrossRefPubMedGoogle Scholar
  26. Marsh ED, Golden JA (2009) Developing an animal model for infantile spasms: pathogenesis, problems and progress. Dis Model Mech 2:329–335CrossRefPubMedGoogle Scholar
  27. Marsh E, Fulp C, Gomez E, Nasrallah I, Minarcik J, Sudi J, Christian SL, Mancini G, Labosky P, Dobyns W, Brooks-Kayal A, Golden JA (2009) Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females. Brain 132:1563–1576CrossRefPubMedGoogle Scholar
  28. Mizukawa M, Ohtsuka Y, Murashima I, Ohtahara S, Narahara K (1992) West syndrome associated with chromosome abnormalities: clinicoelectrical study. Jpn J Psychiatry Neurol 46:435–436PubMedGoogle Scholar
  29. Morimatsu Y, Murofushi K, Handa T, Shinoara T, Shiraki H (1972) Pathology in severe physical and mental disabilities in children – with special reference to 4 cases of nodding spasm. Shinkei Kenkyu No Shimpo 16:465–470PubMedGoogle Scholar
  30. Moshé SL, Albala BJ, Ackermann RF, Engel JJ (1983) Increased seizure susceptibility of the immature brain. Dev Brain Res 7:81–85CrossRefGoogle Scholar
  31. Ohtahara S, Yamatogi Y (2006) Ohtahara syndrome: with special reference to its developmental aspects for differentiating from early myoclonic encephalopathy. Epilepsy Res 70(Suppl 1):S58–S67CrossRefPubMedGoogle Scholar
  32. Okumura A, Hayakawa F, Kuno K, Watanabe K (1996) Periventricular leukomalacia and West syndrome. Dev Med Child Neurol 38:13–18CrossRefPubMedGoogle Scholar
  33. Panayiotopoulos CP (2010) A clinical guide to epileptic syndromes and their treatment, Revised 2nd edn. Springer, LondonGoogle Scholar
  34. Pang Y, Cai Z, Rhodes PG (2003) Disturbance of oligodendrocyte development, hypomyelination and white matter injury in the neonatal rat brain after intracerebral injection of lipopolysaccharide. Brain Res Dev Brain Res 140:205–214CrossRefPubMedGoogle Scholar
  35. Price MG, Yoo JW, Burgess DL, Deng F, Hrachovy RA, Frost JD Jr, Noebels JL (2009) A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx(GCG)10+7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment. J Neurosci 29:8752–8763CrossRefPubMedGoogle Scholar
  36. Rattray M, Baldessari S, Gobbi M, Mennini T, Samanin R, Bendotti C (1996) p-Chlorphenylalanine changes serotonin transporter mRNA levels and expression of the gene product. J Neurochem 67:463–472CrossRefPubMedGoogle Scholar
  37. Rho JM (2004) Basic science behind the catastrophic epilepsies. Epilepsia 45(Suppl 5):5–11CrossRefPubMedGoogle Scholar
  38. Sanchez RM, Jensen FE (2001) Maturational aspects of epilepsy mechanisms and consequences for the immature brain. Epilepsia 42:577–585CrossRefPubMedGoogle Scholar
  39. Satoh J, Mizutani T, Morimatsu Y (1986) Neuropathology of the brainstem in age-dependent epileptic encephalopathy – especially of cases with infantile spasms. Brain Dev 8:443–449PubMedGoogle Scholar
  40. Scantlebury MH, Galanopoulou AS, Chudomelova L, Raffo E, Betancourth D, Moshe SL (2010) A model of symptomatic infantile spasms syndrome. Neurobiol Dis 37:604–612CrossRefPubMedGoogle Scholar
  41. Schwarcz R, Speciale C, Okuno E, French ED, Kohler C (1986) Quinolinic acid: a pathogen in seizure disorders? Adv Exp Med Biol 203:697–707PubMedGoogle Scholar
  42. Siegal T, Melamed E, Sandbank U, Catane R (1988) Early and delayed neurotoxicity of mitoxantrone and doxorubicin following subarachnoid injection. J Neurooncol 6:135–140CrossRefPubMedGoogle Scholar
  43. Silverstein F, Johnston MV (1984) Cerebrospinal fluid monoamine metabolites in patients with infantile spasms. Neurology 34:102–105PubMedGoogle Scholar
  44. Stafstrom CE, Moshe SL, Swann JW, Nehlig A, Jacobs MP, Schwartzkroin PA (2006) Models of pediatric epilepsies: strategies and opportunities. Epilepsia 47:1407–1414CrossRefPubMedGoogle Scholar
  45. Velisek L, Jehle K, Asche S, Veliskova J (2007) Model of infantile spasms induced by N-methyl-D-aspartic acid in prenatally impaired brain. Ann Neurol 61:109–119CrossRefPubMedGoogle Scholar
  46. Veliskova J, Claudio OI, Galanopoulou AS, Kyrozis A, Lado FA, Ravizza T, Velisek L, Moshe SL (2002) Developmental aspects of the basal ganglia and therapeutic perspectives. Epileptic Disord 4(Suppl 3):S73–S82PubMedGoogle Scholar
  47. Wallace RH, Hodgson BL, Grinton BE, Gardiner RM, Robinson R, Rodriguez-Casero V, Sadleir L, Morgan J, Harkin LA, Dibbens LM, Yamamoto T, Andermann E, Mulley JC, Berkovic SF, Scheffer IE (2003) Sodium channel alpha1-subunit mutations in severe myoclonic epilepsy of infancy and infantile spasms. Neurology 61:765–769PubMedGoogle Scholar
  48. Watanabe K (1998) West syndrome: etiological and prognostic aspects. Brain Dev 20:1–8CrossRefPubMedGoogle Scholar
  49. Yamamoto H, Murakami H, Horiguchi K, Egawa B (1995) Studies on cerebrospinal fluid kynurenic acid concentrations in epileptic children. Brain Dev 17:327–329CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Morris H. Scantlebury
    • 1
  1. 1.Saul R. Korey Department of NeurologyAlbert Einstein College of MedicineBronxUSA

Personalised recommendations