Excitation/Inhibition Interactions and Seizures: the Brain’s Lifelong Balancing Act

  • Robert F. Ackermann
  • Solomon L. Moshé
Reference work entry

We crave excitement;

Momma said too much is bad;

She favors GABA.

Haiku 1

Excitation and Inhibition

The vertebrate central nervous system evolved in conjunction with sense organs and muscles to detect and localize food, and to coordinate the muscle contractions that allow individuals to pursue, apprehend, and consume it (Gans and Northcutt 1983; Grillner et al. 1998). Acetylcholine conveys the excitatory signal at neuromuscular synapses, while glutamate conveys the excitatory signal at most synapses of mature brains. However, “excitation” as a property resides not in the signaling substances themselves, but in the responses of postsynaptic cells to these substances. Responses to the same chemical signals (“neurotransmitters”) can vary significantly from one brain locale to another, and in the same locale under changing physiological conditions.

Ion concentration differences across the cell membrane are supported by continual, energy-requiring, “bailing” performed by several...


GABAA Receptor Transmembrane Potential GABAergic Neuron Postsynaptic Neuron Excitatory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


Gamma-amino butyric acid



Supported by NINDS grants NS020253, NS048856, NS058303, a grant from PACE, and the Heffer Family Medical Foundation. SLM is the recipient of the Martin A. and Emily L. Fisher fellowship in Neurology and Pediatrics.


  1. Abegg MH, Savic N, Ehrengruber MU, McKinney RA, Gahwiler BH (2004) Epileptiform activity in rat hippocampus strengthens excitatory synapses. J Physiol 554:439–448CrossRefPubMedGoogle Scholar
  2. Bal T, McCormick DA (1996) What stops synchronized thalamocortical oscillations? Neuron 17:297–308CrossRefPubMedGoogle Scholar
  3. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1999) Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials. Nat Neurosci 2:168–174CrossRefPubMedGoogle Scholar
  4. Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465CrossRefPubMedGoogle Scholar
  5. Ben-Ari Y (2001) Developing networks play a similar melody. Trends Neurosci 24:353–360CrossRefPubMedGoogle Scholar
  6. Bracci E, Panzeri S (2006) Excitatory GABAergic effects in striatal projection neurons. J Neurophysiol 95:1285–1290CrossRefPubMedGoogle Scholar
  7. Bragin A, Mody I, Wilson CL, Engel J Jr (2002) Local generation of fast ripples in epileptic brain. J Neurosci 22:2012–2021PubMedGoogle Scholar
  8. Choe S (2002) Potassium channel structures. Nat Rev Neurosci 3:115–121CrossRefPubMedGoogle Scholar
  9. Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–78CrossRefPubMedGoogle Scholar
  10. Cohen I, Navarro V, Le Duigou C, Miles R (2003) Mesial temporal lobe epilepsy: a pathological replay of developmental mechanisms? Biol Cell 95:329–333CrossRefPubMedGoogle Scholar
  11. Colder BW, Frysinger RC, Wilson CL, Harper RM, Engel J Jr (1996) Decreased neuronal burst discharge near site of seizure onset in epileptic human temporal lobes. Epilepsia 37:113–121CrossRefPubMedGoogle Scholar
  12. Couve A, Moss SJ, Pangalos MN (2000) GABAB receptors: a new paradigm in G protein signaling. Mol Cell Neurosci 16:296–312CrossRefPubMedGoogle Scholar
  13. Crunelli V, Leresche N (1991) A role for GABAB receptors in excitation and inhibition of thalamocortical cells. Trends Neurosci 14:16–21CrossRefPubMedGoogle Scholar
  14. De Jeu M, Pennartz C (2002) Circadian modulation of GABA function in the rat suprachiasmatic nucleus: excitatory effects during the night phase. J Neurophysiol 87:834–844PubMedGoogle Scholar
  15. Douglas RJ, Koch C, Mahowald M, Martin KA, Suarez HH (1995) Recurrent excitation in neocortical circuits. Science 269:981–985CrossRefPubMedGoogle Scholar
  16. Ernst WL, Zhang Y, Yoo JW, Ernst SJ, Noebels JL (2009) Genetic enhancement of thalamocortical network activity by elevating alpha 1g-mediated low-voltage-activated calcium current induces pure absence epilepsy. J Neurosci 29:1615–1625CrossRefPubMedGoogle Scholar
  17. Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABAA receptor signalling. Prog Brain Res 160:59–87CrossRefPubMedGoogle Scholar
  18. Fuentealba P, Timofeev I, Steriade M (2004) Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus. Proc Natl Acad Sci USA 101:9816–9821CrossRefPubMedGoogle Scholar
  19. Galanopoulou AS (2008) Sexually dimorphic expression of KCC2 and GABA function. Epilepsy Res 80:99–113CrossRefPubMedGoogle Scholar
  20. Gans C, Northcutt RG (1983) Neural crest and the origin of vertebrates: a new head. Science 220:268–273CrossRefPubMedGoogle Scholar
  21. Ge S, Pradhan DA, Ming GL, Song H (2007) GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci 30:1–8CrossRefPubMedGoogle Scholar
  22. Gotman J, Grova C, Bagshaw A, Kobayashi E, Aghakhani Y, Dubeau F (2005) Generalized epileptic discharges show thalamocortical activation and suspension of the default state of the brain. Proc Natl Acad Sci USA 102:15236–15240CrossRefPubMedGoogle Scholar
  23. Grillner S, Parker D, el Manira A (1998) Vertebrate locomotion – a lamprey perspective. Ann N Y Acad Sci 860:1–18CrossRefPubMedGoogle Scholar
  24. Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545CrossRefPubMedGoogle Scholar
  25. Hamzei-Sichani F, Kamasawa N, Janssen WG, Yasumura T, Davidson KG, Hof PR, Wearne SL, Stewart MG, Young SR, Whittington MA, Rash JE, Traub RD (2007) Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze fracture replica immunogold labeling. Proc Natl Acad Sci USA 104:12548–12553CrossRefPubMedGoogle Scholar
  26. Haut SR, Veliskova J, Moshe SL (2004) Susceptibility of immature and adult brains to seizure effects. Lancet Neurol 3:608–617CrossRefPubMedGoogle Scholar
  27. Heida JG, Chudomel O, Galanopoulou AS, Velisek L, Veliskova J, Moshe SL (2008) Sex influence on the maturation of endogenous systems involved in seizure control. In: Arzimanoglou A (ed) Biology of seizure susceptibility in development of the brain; in “Progress in Epileptic Disorders Series”. John Libbey Eurotext, London, pp 129–144Google Scholar
  28. Henze DA, Wittner L, Buzsaki G (2002) Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat Neurosci 5:790–795PubMedGoogle Scholar
  29. Hestrin S, Galarreta M (2005) Electrical synapses define networks of neocortical GABAergic neurons. Trends Neurosci 28:304–309CrossRefPubMedGoogle Scholar
  30. Hewitt SA, Wamsteeker JI, Kurz EU, Bains JS (2009) Altered chloride homeostasis removes synaptic inhibitory constraint of the stress axis. Nature Neuroscience 12:438–443CrossRefPubMedGoogle Scholar
  31. Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R, Rivera C (2007) Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 27:9866–9873CrossRefPubMedGoogle Scholar
  32. Huguenard JR, McCormick DA (2007) Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci 30:350–356CrossRefPubMedGoogle Scholar
  33. Jensen K, Mody I (2001) GHB depresses fast excitatory and inhibitory synaptic transmission via GABAB receptors in mouse neocortical neurons. Cereb Cortex 11:424–429CrossRefPubMedGoogle Scholar
  34. Kajikawa Y, Saitoh N, Takahashi T (2001) GTP-binding protein beta gamma subunits mediate presynaptic calcium current inhibition by GABAB receptor. Proc Natl Acad Sci USA 98:8054–8058CrossRefPubMedGoogle Scholar
  35. Khalilov I, Holmes GL, Ben Ari Y (2003) In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures. Nat Neurosci 6:1079–1085CrossRefPubMedGoogle Scholar
  36. Khirug S, Yamada J, Afzalov R, Voipio J, Khiroug L, Kaila K (2008) GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1. J Neurosci 28:4635–4639CrossRefPubMedGoogle Scholar
  37. Kostopoulos GK (2001) Involvement of the thalamocortical system in epileptic loss of consciousness. Epilepsia 42(Suppl 3):13–19CrossRefPubMedGoogle Scholar
  38. Lado FA, Moshe SL (2008) How do seizures stop? Epilepsia 49:1651–1664CrossRefPubMedGoogle Scholar
  39. Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7:548–562CrossRefPubMedGoogle Scholar
  40. Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6:312–324CrossRefPubMedGoogle Scholar
  41. Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 20:38–43CrossRefPubMedGoogle Scholar
  42. Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664CrossRefPubMedGoogle Scholar
  43. Llinas R, Urbano FJ, Leznik E, Ramirez RR, van Marle HJ (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28:325–333CrossRefPubMedGoogle Scholar
  44. Maccaferri G, Mangoni M, Lazzari A, DiFrancesco D (1993) Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. J Neurophysiol 69:2129–2136PubMedGoogle Scholar
  45. Madden DR (2002) The structure and function of glutamate receptor ion channels. Nat Rev Neurosci 3:91–101CrossRefPubMedGoogle Scholar
  46. McIntyre DC, Gilby KL (2008) Mapping seizure pathways in the temporal lobe. Epilepsia 49(Suppl 3):23–30CrossRefPubMedGoogle Scholar
  47. McIntyre DC, Poulter MO (2001) Kindling and the mirror focus. Int Rev Neurobiol 45:387–407CrossRefPubMedGoogle Scholar
  48. Meeren HK, Pijn JP, Van Luijtelaar EL, Coenen AM, Lopes da Silva FH (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22:1480–1495PubMedGoogle Scholar
  49. Meyrand P, Simmers J, Moulins M (1991) Construction of a pattern-generating circuit with neurons of different networks. Nature 351:60–63CrossRefPubMedGoogle Scholar
  50. Okabe A, Ohno K, Toyoda H, Yokokura M, Sato K, Fukuda A (2002) Amygdala kindling induces upregulation of mRNA for NKCC1, a Na(+), K(+)-2Cl(−) cotransporter, in the rat piriform cortex. Neurosci Res 44:225–229CrossRefPubMedGoogle Scholar
  51. Paladini CA, Iribe Y, Tepper JM (1999) GABAA receptor stimulation blocks NMDA-induced bursting of dopaminergic neurons in vitro by decreasing input resistance. Brain Res 832:145–151CrossRefPubMedGoogle Scholar
  52. Prince DA, Parada I, Scalise K, Graber K, Jin X, Shen F (2009) Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia 50(Suppl 2):30–40CrossRefPubMedGoogle Scholar
  53. Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352CrossRefPubMedGoogle Scholar
  54. Ruusuvuori E, Li H, Huttu K, Palva JM, Smirnov S, Rivera C, Kaila K, Voipio J (2004) Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells. J Neurosci 24:2699–2707CrossRefPubMedGoogle Scholar
  55. Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296CrossRefPubMedGoogle Scholar
  56. Slaght SJ, Paz T, Chavez M, Deniau JM, Mahon S, Charpier S (2004) On the activity of the corticostriatal networks during spike-and-wave discharges in a genetic model of absence epilepsy. J Neurosci 24:6816–6825CrossRefPubMedGoogle Scholar
  57. Staley KJ, Soldo BL, Proctor WR (1995) Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269:977–981CrossRefPubMedGoogle Scholar
  58. Stuart G, Spruston N, Sakmann B, Hausser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20:125–131CrossRefPubMedGoogle Scholar
  59. Trevelyan AJ, Baldeweg T, van Drongelen W, Yuste R, Whittington M (2007) The source of afterdischarge activity in neocortical tonic-clonic epilepsy. J Neurosci 27:13513–13519CrossRefPubMedGoogle Scholar
  60. Tyzio R, Minlebaev M, Rheims S, Ivanov A, Jorquera I, Holmes GL, Zilberter Y, Ben Ari Y, Khazipov R (2008) Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus. Eur J Neurosci 27:2515–2528CrossRefPubMedGoogle Scholar
  61. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239CrossRefPubMedGoogle Scholar
  62. Vida I, Bartos M, Jonas P (2006) Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron 49:107–117CrossRefPubMedGoogle Scholar
  63. Zhang L, McBain CJ (1995) Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. J Physiol 488(Pt 3):661–672PubMedGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2010

Authors and Affiliations

  • Robert F. Ackermann
    • 1
  • Solomon L. Moshé
    • 2
  1. 1.Department of Psychiatry and Behavioral NeurobiologyUAB School of MedicineBirminghamUSA
  2. 2.Department of Neurology, Neuroscience & PediatricsAlbert Einstein College of MedicineBronxUSA

Personalised recommendations