Skip to main content

The Equivalent Double Layer: Source Models for Repolarization

  • Reference work entry
Comprehensive Electrocardiology

1 7.1 Introduction

The modeling of the electric current sources during depolarization by means of the uniform double layer (UDL) is described in general terms in Chap. 5, and in greater detail in Chap. 6. It is linked to the electrophysiology of wave fronts propagating through the myocardium. Some decades ago [12], studies appeared that exploited the equivalence between the actual double layer at the wave fronts and a source description on the heart surface, the surface bounding the myocardium. This source description has been found to be very effective in the inverse determination of the timing of depolarization on the basis of observed body surface potentials (Chap. 9), a method now commonly referred to as activation time imaging.

Around the same period [3], the development of a source model started in which the equivalent cardiac electric generator is expressed in terms of the electric potentials on a surface encompassing the myocardium, similar to the pericardium. In most...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cuppen, J.J.M. and A. van Oosterom, Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng., 1984;BME-31: 652–659.

    Article  Google Scholar 

  2. Salu, Y., Relating the multipole moments of the heart to activated parts of the epicardium and endocardium. Ann. Biomed. Eng., 1978;6: 492–505.

    Article  PubMed  CAS  Google Scholar 

  3. Martin, R.O., Inverse Electrocardiography. Duke, NC: Duke University, 1970.

    Google Scholar 

  4. van Oosterom, A., The equivalent surface source model in its application to the T wave, in Electrocardiology’01. University Press São Paolo, 2002.

    Google Scholar 

  5. Geselowitz, D.B., On the theory of the electrocardiogram. Proc. IEEE, 1989;77/6: 857–876.

    Article  Google Scholar 

  6. Geselowitz, D.B., Description of cardiac sources in anisotropic cardiac muscle. Application of bidomain model. J. Electrocardiol., 1992;25(Suppl.): 65–67.

    Article  PubMed  Google Scholar 

  7. van Oosterom, A. and P. van Dam, The intra-myocardial distance function as used in the inverse computation ot the timing of depolarization and repolarization, in Computers in Cardiology. France: Lyon, 2005.

    Google Scholar 

  8. Cuppen, J.J.M., Calculating the isochrones of ventricular depolarization. SIAM J. Sci. Stat. Comput., 1984;5: 105–120.

    Article  Google Scholar 

  9. van Oosterom, A. and R.T. van Dam, Potential distribution in the left ventricular wall during depolarization, in Adv. Cardiol., 1976;27–31.

    Google Scholar 

  10. Plonsey, R. and A. van Oosterom, Implications of macroscopic source strength on cardiac cellular activation models. J. Electrocardiol., 1991;24/2: 99–112.

    Article  Google Scholar 

  11. Roberts, D.E. and A.M. Scher, Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ. Res., 1982;50: 342–351.

    Article  PubMed  CAS  Google Scholar 

  12. Simms, H.D. and D.B. Geselowitz, Computation of heart surface potentials using the surface source model. J. Cardiovasc. Electrophysiol., 1995;6: 522–531.

    Article  PubMed  Google Scholar 

  13. van Oosterom, A., Genesis of the T-wave as based on an equivalent surface source model. J. Electrocardiol., 2001;34S: 217–227.

    Article  Google Scholar 

  14. van Oosterom, A. and V. Jacquemet, Genesis of the P wave: atrial signals as generated by the equivalent double layer source model. Eurospace, 2005;7(Suppl. 2): S21–S29.

    Article  Google Scholar 

  15. van Oosterom, A. and V. Jacquemet, A parameterized description of transmembrane potentials used in forward and inverse procedures, in International Conference on Electrocardiology. Gdansk; Poland: Folia Cardiologica, 2005.

    Google Scholar 

  16. Haws, C.W. and R.L. Lux, Correlation between in vivo transmembrane action potential durations and activation-recovery intervals from electrograms. Circulation, 1990;81/1: 281–288.

    Article  Google Scholar 

  17. Huiskamp, G. and A. Van Oosterom, The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans. Biomed. Eng., 1989;35(12): 1047–1058.

    Article  Google Scholar 

  18. Durrer, D., et al., Total excitation of the isolated human heart. Circulation, 1970;41: 899–912.

    Article  PubMed  CAS  Google Scholar 

  19. Franz, M.R., et al., Monophasic action potential mapping in a human subject with normal electrograms: direct evidence for the genesis of the T wave. Circulation, 1987;75/2: 379–386.

    Article  Google Scholar 

  20. Cowan, J.C., et al., Sequence of epicardial repolarization and configuration of the T wave. Br. Heart J., 1988;60: 424–433.

    Article  PubMed  CAS  Google Scholar 

  21. di Bernardo, D. and A. Murray, Explaining the T-wave shape in the ECG. Nature, 2000;403: 40.

    Article  PubMed  CAS  Google Scholar 

  22. Harumi, K., M.J. Burgess, and J.A. Abildskov, A theoretic model of the T wave. Circulation, 1966;XXIV: 657–668.

    Article  Google Scholar 

  23. Yan, G.X., W. Shimizu, and C. Antzelevitch, Characteristics and distribution of M cells in arterially perfused canine left ventricular wedge preparation. Circulation, 1998;98: 1921–7.

    Article  PubMed  CAS  Google Scholar 

  24. Antzelevitch, C., et al., The M-cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J. Cardiovasc. Electrophysiol., 1999;10: 1124–52.

    Article  PubMed  CAS  Google Scholar 

  25. van Oosterom, A., The dominant T wave and its significance. J. Cardiovasc. Electrophysiol., 2003;14(Suppl. 10): S180–S187.

    Article  PubMed  Google Scholar 

  26. van Oosterom, J., The singular value decomposition of the T wave: its link with a biophysical model of repolarization. Int. J. Bioelectromagnetism, 2002;4: 59–60.

    Google Scholar 

  27. Hooft van Huysduynen, B., et al., Dispersion of repolarization in cardiac resynchronization therapy. Heart Rhythm, 2005;2: 1286–1293.

    Article  Google Scholar 

  28. Huiskamp, G.J.M., Simulation of depolarization and repolarization in a membrane equations based model of the anisotropic ventricle. IEEE Trans. Biomed. Eng., 1998;BME-45/7: 847–855.

    Article  Google Scholar 

  29. Hooft van Huysduynen, B., et al., Validation of ECG indices of ventricular repolarization heterogeneity. J. Cardiovasc. Electrophysiol., 2005;16: 1097–1103.

    Article  Google Scholar 

  30. van Oosterom, A. and T.F. Oostendorp, ECGSIM: an interactive tool for studying the genesis of QRST waveforms. Heart, 2004;90(2): 165–168.

    Article  PubMed  Google Scholar 

  31. Wilson, F.N., A.G. Macleod, and P.S. Barker, The distribution of action currents produced by the heart muscle and other excitable tissues immersed in conducting media. J. Gen. Physiol., 1933;16: 423–456.

    Article  PubMed  CAS  Google Scholar 

  32. Plonsey, R., An extension of the solid angle formulation for an active cell. Biophys. J., 1965;5: 663–666.

    Article  PubMed  CAS  Google Scholar 

  33. Muler, A.L. and V.S. Markin, Electrical properties of anisotropic nerve-muscle syncytia-II, Spread of flat front of excitation. Biophysics, 1977;22: 536–541.

    Google Scholar 

  34. Geselowitz, D.B. and W.T.I. Miller, A bi-domain model for anisotropic cardiac muscle. Ann. Biomed. Eng., 1983;11: 191–206.

    Article  PubMed  CAS  Google Scholar 

  35. Potse, M., et al., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng., 2006;53(12): 2425–2435.

    Article  PubMed  Google Scholar 

  36. Gulrajani, R.M., Bioelectricity and Biomagnetism. New York: Wiley, 1998.

    Google Scholar 

  37. Henriquez, C.S., Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng., 1993;21: 1–77.

    PubMed  CAS  Google Scholar 

  38. Schmitt, O., Biological information processing using the concept of interpenetrating domains, in Information Processing in the Nervous System, K.N. Leibovic, Editor. New York: Springer, 1969.

    Google Scholar 

  39. Panfilov, A.V., Modelling of re-entrant patterns in an anatomical model of the heart, in Computational Biology of the Heart, A.V. Panfilov and A.V. Holden, Editors. Chistester, UK: Wiley, 1997.

    Google Scholar 

  40. Gabriel, R.W. and L. Gabriel, The dielectric properties of biological tissues. (II) Measurements in the range of 10 Hz to 20 GHz, Phys. Med. Biol., 1996;41: 2251–2269.

    Article  PubMed  CAS  Google Scholar 

  41. Roth, B.J., Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng., 1997;BME-44: 326–328.

    Article  Google Scholar 

  42. Kléber, A.G. and C.B. Riegger, Electrical constants of arterially perfused rabbit papillary muscle. J. Physiol., 1987;385: 307–324.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

van Oosterom, A. (2010). The Equivalent Double Layer: Source Models for Repolarization. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics