Skip to main content

Genesis of the Electrocardiogram

  • Reference work entry
Comprehensive Electrocardiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waller, A., A demonstration on man of the electromotive changes accompanying the heart’s beat. J. Physiol., 1887;8: 229–234.

    PubMed  CAS  Google Scholar 

  2. Einthoven; 100 Yeart of Electrocardiography, in M.J. Schalij, M.J. Janse, A. van Oosterom, V.D.W.E.E. and H.J.J. Wellens, Editors. Leiden: The Einthoven Foundation, 2002, pp. 616.

    Google Scholar 

  3. Burch, G.E. and N.P. DePasquale, A History of Electrocardiography, Chicago: Illinois, 1964.

    Google Scholar 

  4. Johnson, J.C. and N.C. Flowers, History of electrocardiography and vectorcardiography, in The Theoretical Basis of Electrocardiology, C.V. Nelson, and D.B. Geselowitz, Editors. Oxford, Clarendon Press, 1976.

    Google Scholar 

  5. Einthoven, W., Un nouveau galvanometer. Arch. Neerl. Sci. Exactes Nat., 1901;6: 625–633.

    Google Scholar 

  6. Einthoven, W. and K. de Lint, Ueber das normale menschliche Elektrokardiogram und Uber die capillar-elektrometrische Untersuchung einiger Herzkranken. Pflugers Arch. Ges. Physiol., 1900;80: 139–160.

    Article  Google Scholar 

  7. Lewis, T., J. Meakins, and P.D. White, The excitatory process in the dog’s heart. Part I-The auricles. Phil. Trans. R. Soc. London Ser. B., 1914;205: 375–420.

    Article  Google Scholar 

  8. Lewis, T. and M.A. Rothschild, The excitatory process in the dog’s heart. Part II. Phil. Trans. R. Soc. London Ser. B., 1915;206: 181–226.

    Article  Google Scholar 

  9. Wilson, F.N., F.D. Johnston, A.G. MacLeod, and P.S. Barker. Electrocardiograms that represent the potential variations of a single electrode. Am. Heart. J., 1934;9: 447–458.

    Article  Google Scholar 

  10. Ling, G. and R.W. Gerard, The normal membrane potential of frog sartorius fibers. J. Cellular Comp. Physiol., 1949;34: 383–396.

    Article  CAS  Google Scholar 

  11. Woodbury, L.A., H.H. Hecht, and A.R. Christopherson, Membrane resting and action potentials of single cardiac muscle fibers of the frog ventricle. Am. J. Physiol., 1951;164: 307–318.

    PubMed  CAS  Google Scholar 

  12. Hoffman, B.F. and P.F. Cranefield, Electrophysiology of the Heart. New York: McGraw-Hil, 1960.

    Google Scholar 

  13. Netter, F.H., Heart, vol 5. New York: CIBA, 1969.

    Google Scholar 

  14. Hodgkin, A.L. and A.F. Huxley, A quantitative description of the membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952;117: 500–544.

    PubMed  CAS  Google Scholar 

  15. Beeler, G.W. and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol. (London), 1977;268: 177–210.

    CAS  Google Scholar 

  16. Ebihara, L. and E.A. Johnson, Fast sodium current in cardiac muscle. A quantitative description, Biophysical Journal, 1980;32: 779–790.

    Article  PubMed  CAS  Google Scholar 

  17. DiFrancesco, D. and D. Noble, A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. R. Soc. London Ser. B., 1985;307: 353–398.

    Article  CAS  Google Scholar 

  18. Luo, C. and Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulation of ionic currents and concentration changes. Circ. Res., 1994;74: 1071–1096.

    Article  PubMed  CAS  Google Scholar 

  19. Courtemanche, M., R.J. Ramirez, and S. Nattel, Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. Am. J. Physiol., 1998;275: 301–321.

    Google Scholar 

  20. Spach, M.S. and M.J. Kootsey, Relating the sodium current and conductance to the shape of transmembrane and extracellular potentials by simulation: Effects of propagation boundaries. IEEE Trans. Biomed. Eng., 1985;BME-32: 743–755.

    Article  Google Scholar 

  21. Plonsey, R. and R.C. Barr, Mathematical modeling of electrical activity of the heart. J. Electrocardiol., 1987;20: 219–226.

    Article  PubMed  CAS  Google Scholar 

  22. Plonsey, R. and R.C. Barr, Bioelectricity: A Quantitative Approach. New York: Springer, 2007.

    Google Scholar 

  23. Wilson, F.N., A.G. Macleod, and P.S. Barker, The distribution of action currents produced by the heart muscle and other excitable tissues immersed in conducting media. J. Gen. Physiol., 1933;16: 423–456.

    Article  PubMed  CAS  Google Scholar 

  24. Holland, R.P. and M.F. Arnsdorf, Solid angle theory and the electrocardiogram: physiologic and quantitative interpretations. Prog. Cardiovasc. Dis., 1977;19: 431–457.

    Article  PubMed  CAS  Google Scholar 

  25. Goldman, M.J., Principles of Clinical Electrocardiography, 10 ed. Los Altos: Lange, 1979.

    Google Scholar 

  26. Scher, A.M., A.C. Young, A.L. Malmgren, and R.R. Paton, Spread of electrical activity through the wall of the ventricle. Cardiovasc. Res., 1953;1: 539–547.

    CAS  Google Scholar 

  27. Sano, T., N. Takayama, and T. Shimamoto, Directional diff- erences of conduction velocity in the cardiac ventricular syncytium studied by microelectrodes. Circ. Res., 1959; VII: 262–267.

    Article  Google Scholar 

  28. Spach, M.S. and R.C. Barr, Origin of epicardial ST-T wave potentials in the intact dog. Circ. Res., 1976;39(4): 475–487, (1978).

    Article  PubMed  CAS  Google Scholar 

  29. Burger, H.C., The zero of potential: A persistent error. Am. Heart J., 1955;49: 581–586.

    Article  PubMed  CAS  Google Scholar 

  30. Geselowitz, D.B., The zero of potential. IEEE Engineering in Medicine and Biology Magazine, 1998;17: 128–132.

    Article  PubMed  CAS  Google Scholar 

  31. van Oosterom, A., Solidifying the solid angle. J. Electrocardiol., 2002;35S: 181–192.

    Article  Google Scholar 

  32. Kondo, M., V. Nesterenko, and C. Antzelevitch, Cellular basis for the monophasic action potential. Which electrode is the recording electrode? Cardiovasc. Res., 2004;62: 635–644.

    Article  Google Scholar 

  33. Vigmond, E.J., The electrophysiological basis of MAP recordings. Cardiovasc. Res., 2005;68: 502–503.

    Article  PubMed  CAS  Google Scholar 

  34. Scher, A.M., and Excitation of the heart, in The theoretical basis of electrocardiology, C.V. Nelson, and D.B. Geselowitz, Editors. Oxford: Clarendon Press, 1976: 44–69

    Google Scholar 

  35. James, T.N., The connecting pathways between the sinus node and A-V node and between the right and the left atrium in the human heart. Am. Heart J., 1963;66: 498–508.

    Article  PubMed  CAS  Google Scholar 

  36. Puech, P., L’activite electrique auriculaire normale et pathologique, Paris: Masson et Cie, 1956.

    Google Scholar 

  37. Spach, M.S., M. Lieberman, J.G. Scott, R.C. Barr, E.A. Johnson, and J.M. Kootsey, Excitation sequences of the atrial septum and the AV node in isolated hearts of the dog and rabbit. Circ. Res, 1971;29: 156–172.

    Article  PubMed  CAS  Google Scholar 

  38. Sano, T., Conduction in the heart, in The theoretical basis of electrocardiology, C.V. Nelson and D.B. Geselowitz, Editors. Oxford: Clarendon Press, 1976.

    Google Scholar 

  39. Spach, M.S., R.C. Barr, R.B. Warren, D.W. Benson, A. Walston, and S.B. Edwards, Isopotential body surface mapping in subjects of all ages: emphasis on low-level potentials with analysis of the method. Circulation, 1979;59: 805–821.

    Article  PubMed  CAS  Google Scholar 

  40. Mirvis, D.M., Body surface distribution of electrical potential during atrial depolarization and repolarization. Circulation, 1980;62: 167–173.

    Article  PubMed  CAS  Google Scholar 

  41. Ihara, Z., A. van Oosterom, and R. Hoekema, Atrial repolarization as observable during the PQ interval. J. Electrocardiol., 2006;39(3): 290–297.

    Article  PubMed  Google Scholar 

  42. van Oosterom, A. and V. Jacquemet, Genesis of the P wave: Atrial signals as generated by the equivalent double layer source model. Europace, 2005;7: S21–S29.

    Article  Google Scholar 

  43. Berbari, E.J., R. Lazzara, P. Samet, and B.J. Scherlag, Noninvasive technique for detection of electrical activity during the PR segment. Circulation, 1973;48: 1005–1013.

    Article  PubMed  CAS  Google Scholar 

  44. Flowers, N.C., R.C. Hand, P.C. Orander, C.B. Miller, M. Walden, and L.G. Horan, Surface recording of electrical activity from the region of the bundle of His. Am. J. Cardiol., 1974;33: 384–389.

    Article  PubMed  CAS  Google Scholar 

  45. Flowers, N.C., V. Shvartsman, H.L.G.P. Palakurthy, G. S. Som, and M. R. Sridharan, Analysis of PR subintervals in normal subjects and early studies in patients with abnormalities of the conduction system using surface His bundle recordings. J. Am. Coll. Cardiol., 1983;2: 939–946.

    Article  PubMed  CAS  Google Scholar 

  46. Helm, R.A., Electrocardiographic cancellation. Mathematical basis. Am. Heart J., 1960;60: 251–265.

    Article  PubMed  CAS  Google Scholar 

  47. Spach, M.S., R.C. Barr, D.W. Benson, Walston, and S.B. Edwards, Body surface low-level potentials during repolarization with analysis of the ST segment. Circulation, 1979; 59/4: 822–836.

    Article  Google Scholar 

  48. Maroko, P.R., P. Libby, J.W. Covell, B.E. Sobel, J.J. Ross, and E. Braunwald, Precordial S-T segment elevation mapping: An atraumatic method for assessing alterations in the extent of myocardial ischemic injury. Am. J. Cardiol., 1972;29: 223–230.

    Article  PubMed  CAS  Google Scholar 

  49. Janse, M.J., F.J.L.V. Capelle, H. Morsink, A.G. Kléber, F. Wilms-Schopman, C.N. d’Alnoncourt, and D.D. Durrer, Flow of injury current and patterns of excitation during ventricular arhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Circ. Res., 1980;47: 151–165.

    Article  PubMed  CAS  Google Scholar 

  50. Burgess, M.J., L.S. Green, K. Millar, R. Wyatt, and J.A. Abildskov, The sequence of normal ventricular recovery. Am. Heart J., 1972;84(5): 660–669.

    Article  PubMed  CAS  Google Scholar 

  51. Franz, M.R., K. Bargheer, W. Rafflenbeul, A. Haverich, and P.R. Lichtlen, Monophasic action potential mapping in a human subject with normal electrograms: Direct evidence for the genesis of the T wave, Circulation, 1987;75/2: 379–386.

    Article  Google Scholar 

  52. Cowan, J.C., C.J. Hilton, C.J. Griffiths, S. Tansuphaswadikul, J.P. Bourke, A. Murray, and R.W.F. Campbell, Sequence of epicardial repolarization and configuration of the T wave. Br. Heart J., 1988;60: 424–433.

    Article  PubMed  CAS  Google Scholar 

  53. van Oosterom, A., Genesis of the T-wave as based on an equivalent surface source model. J. Electrocardiol., 2001;34S: 217–227.

    Article  Google Scholar 

  54. Abildskov, J.A., M.J. Burgess, M.J. Millar, R. Wyatt, and R. Baule, The primary T wave- a new electrocardiographic waveform. Am. Heart J., 1971;81/2: 242–249.

    Article  Google Scholar 

  55. Horan, L.G., R.C. Hand, J.C. Johnson, M.R. Sridharan, T.B. Rankin, and N.C. Flowers, A theoretical examination of ventricular repolarization and the secondary T wave. Circ. Res., 1978;42/6: 750–757.

    Article  Google Scholar 

  56. Wilson, F.N., A.G. Macleod, P.S. Barker, and F.D. Johnston, The determination and significance of the areas of the ventricular deflections of the electrocardiogram. Am. Heart J., 1934;10: 46–61.

    Article  Google Scholar 

  57. Burger, H.C., A theoretical elucidation of the notion: Ventricular gradient. Am. Heart J., 1957;53/2: 240–246.

    Article  Google Scholar 

  58. Geselowitz, D.B., The ventricular gradient revisited: Relation to the area under the action potentials. IEEE Trans. Biomed. Eng., 1983;BME-30/1: 76–77.

    Article  Google Scholar 

  59. Abildskov, J.A., P. Urie, R. Lux, M.J. Burgess, and R. Wyatt, Body surface distribution of QRST area. Adv. Cardiol., 1978;21: 59–64.

    PubMed  CAS  Google Scholar 

  60. van Oosterom, A., Reflections on T waves, in Advances in Electrocardiology, M. Hiraoka, S. Ogawa, I. Kodama, I. Hiroshi, H. Kasnuki, and T. Katoh, Editors. New Jersey, World Scientific, 2005, pp. 807–815.

    Google Scholar 

  61. Plonsey, R., An extension of the solid angle formulation for an active cell. Biophysical J., 1965;5: 663–666.

    Article  CAS  Google Scholar 

  62. Haws, C.W., and R.L. Lux, Correlation between in vivo transmambrane action potential durations and activation-recovery intervals from electrograms. Circulation, 1990;81/1: 281–288.

    Article  Google Scholar 

  63. Kardys, I., J.A. Kors, I.M. van der Meer, A. Hofman, D.A.M. van der Kuip, and J.C.M. Witteman, Spatial QRS-T angle predicts cardiac death in a general polulation. Eur. Heart J., 2003;24: 1357–1364.

    Article  PubMed  Google Scholar 

  64. Zabel, M., B. Acar, T. Klingenheber, M.A. Franz, S.H. Holenlozer, and M. Malik, Analysis of 12-lead T-wave morphology for risk stratification after myocardial infarction. Circulation, 2000;102: 1252–1257.

    Article  PubMed  CAS  Google Scholar 

  65. Surawicz, B., U wave - the controversial genesis and the clinical significance. Jpn. Heart J., 1982;23(suppl.I): 17–22.

    Google Scholar 

  66. Lepeschkin, E., Physiologic basis of the U wave, in Advances in Electrocardiography, R.C. Schlant and J.W. Hurst, Editors. New York, Grune and Stratton, 1972.

    Google Scholar 

  67. Kishida, H., J.S. Cole, and B. Surawicz, Negative U wave: A highly specific but poorly understood sign of heart d disease. Am. J. Cardiol., 1982;49: 2030–2036.

    Article  PubMed  CAS  Google Scholar 

  68. Lab, M.J., Mechanically dependent changes in action potentials recorded from the intact frog ventricle. Circ. Res., 1978;42: 519–528.

    Article  PubMed  CAS  Google Scholar 

  69. Antzelevitch, C., and S. Sicouri, Clinical relevance of cardiac arrhythmias generated by after-depolarsations: Role of M-cells in the generation of U-waves, triggered activity and torsade de pointes. J. Am. Coll. Cardiol., 1994;23: 259–277.

    Article  PubMed  CAS  Google Scholar 

  70. di Bernardo, D., and A. Murray, Origin on the electrocardiogram of U-waves and abnormal U-wave inversion. Cardiovasc. Res., 2002;53: 202–208.

    Article  PubMed  Google Scholar 

  71. Ritsema van Eck, H., J.A. Kors, and G. van Herpen, The U wave in the electrocardiogram: A solution for a 100-year-old riddle. Cardiovasc. Res., 2005;67: 256–262.

    Article  PubMed  CAS  Google Scholar 

  72. Geselowitz, D.B., Multipole representation for an equivalent cardiac generator. Proc. IRE, 1960, pp. 75–79.

    Google Scholar 

  73. Frank, E., Absolute quantitative comparison of instantaneous QRS equipotentials on a normal subject with dipole potentials on a homogeneous torso model. Circ. Res., 1955;3: 243–251.

    Article  PubMed  CAS  Google Scholar 

  74. Taccardi, B., Distribution of heart potentials on the thoracic surface of normal human subjects. Circ. Res., 1963;12: 341–352.

    Article  PubMed  CAS  Google Scholar 

  75. Barber, M.R., and E.J. Fischmann, Heart dipole regions and the measurement of dipole moment. Nature, 1961;192: 141–142.

    Article  PubMed  CAS  Google Scholar 

  76. Selvester, R.H., J.C. Solomon, and T.L. Gillespie, Digital computer model of a total body electrocardiographic surface map. An adult male-torso stimulation with lungs. Circulation, 1968;38: 684–690.

    Article  PubMed  CAS  Google Scholar 

  77. Ritsema van Eck, H.J., Digital Simulation of Cardiac Excitation and Depolarization, PhD. thesis. Halifax, NS, Canada, Dalhousie University, 1972.

    Google Scholar 

  78. Miller, W.T., and D.B. Geselowitz, Simulation studies of the electrocardiogram. I. The normal heart. Circ. Res., 1978;43: 301–315.

    Article  PubMed  CAS  Google Scholar 

  79. van Oosterom, A., and T.F. Oostendorp, ECGSIM: An interactive tool for studying the genesis of QRST waveforms. Heart, 2004;90: 165–168.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

Barr, R.C., van Oosterom, A. (2010). Genesis of the Electrocardiogram. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics