Skip to main content

Activation of the Heart

  • Reference work entry
  • 3508 Accesses

1 4.1 Introduction

The cardiac electrical impulse is initiated in the sinoatrial node and spreads rapidly over the atria, slowly through the atrioventricular node, and rapidly over the specific ventricular conduction system and myocardium of both ventricles. These excitable tissues are able to generate an action potential in response to a suprathreshold current stimulus. The voltage difference between excited and resting tissue drives local current circuits that excite the resting tissue thereby causing spread of excitation in a wave-like manner. The main factors that determine propagation are (1) the properties of the ionic channels in the cell membrane, (2) the passive electrical properties of the tissue, and (3) in two- or three-dimensional media the curvature of the excitation wave. In atrial and ventricular myocardium, and in the specific ventricular conduction system, the current responsible for the action potential upstroke and for delivering local current for propagation is...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Janse, M.J. and M.J. Davies, Generation and conduction of the heart beat and their disturbances, in Diseases of the Heart, 2nd ed., D.G. Julian, A.J. Camm, K.M. Fox, R.J.C. Hall, and P.A. Poole-Wilson, Editors. London, WB Saunders Company Ltd, 1996, pp. 88–114.

    Google Scholar 

  2. Kucera, J.P., A.G. Kléber, and S. Rohr, Slow conduction in cardiac tissue: II. Effects of branching tissue geometry. Circ. Res., 1998;83: 795–805.

    Article  PubMed  CAS  Google Scholar 

  3. Shaw, R.M. and Y. Rudy, Ionic mechanisms of propagation in cardiac tissue. Roles of sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res., 1997;81: 727–741.

    Article  PubMed  CAS  Google Scholar 

  4. Kléber, A.G., M.J. Janse, and V.G. Fast, Normal and abnormal conduction in the heart, in Handbook of Physiology, section 2 The Cardiovascular System. Volume 1: The Heart. New York, Oxford University Press, 2001, pp. 455–530.

    Google Scholar 

  5. Keith, A. and M. Flack, The form and nature of the muscular connections between the primary divisions of the vertebrate heart. J. Anat. Physiol., 1907;41: 172–189.

    PubMed  CAS  Google Scholar 

  6. Tranum-Jensen, J., The fine structure of the sinus node: a survey, in The Sinus Node, F.I.M. Bonke, Editor. The Hague, Nijhoff, 1978, pp. 149–165.

    Chapter  Google Scholar 

  7. Opthof, T., The mammalian sinoatrial node. Cardiovasc. Drugs Ther., 1988;1: 573–597.

    Article  PubMed  CAS  Google Scholar 

  8. Masson-Pévet, M., W.K. Bleeker, A.J.C. Mackaay, L.N. Bouman, and J.M. Houtkooper, Sinus node and atrial cells from the rabbit heart: a quantitative electron microscopic description after electrophysiological localization. J. Mol. Cell. Cardiol., 1979;11: 555–568.

    Article  PubMed  Google Scholar 

  9. Bleeker, W.K., A.J.C. Mackaay, M. Masson-Pévet, L.N. Bouman, and A.E. Becker, Functional and morphological organization of the rabbit sinus node. Circ. Res., 1980;46: 11–22.

    Article  PubMed  CAS  Google Scholar 

  10. Oosthoek, P.W., S. Viragh, A.E.M. Mayen, M.J.A. van Kempen, W.H. Lamers, and A.F.M. Moorman, Immunohistochemical delineation of the conduction system: I. The sinoatrial node. Circ. Res., 1993;73: 473–481.

    Article  PubMed  CAS  Google Scholar 

  11. Verheijck, E.E., A. Wessels, A.C.G. van Ginneken, J. Bourier, M.W.M. Markman, J.L.M. Vermeulen, J.M.T. de Bakker, W.H. Lamers, T. Opthof, and L.N. Bouman, Distribution of atrial and nodal cells within the rabbit sinoatrial node. Models of sinoatrial transition. Circulation, 1998;97: 1623–1631.

    Article  PubMed  CAS  Google Scholar 

  12. Opthof, T., B. de Jonge, H.J. Jongsma, and L.N. Bouman, Functional morphology of the mammalian sinuatrial node. Eur. Heart J., 1987;8: 1249–1259.

    PubMed  CAS  Google Scholar 

  13. James, T.N., The sinus node. Am. J. Cardiol., 1977;40: 965–986.

    Article  PubMed  CAS  Google Scholar 

  14. Opthof, T., B. de Jonge, A.J. Mackaay, W.K. Bleeker, M. Masson-Pévet, H.J. Jongsma, and L.N. Bouman, Functional and morphological organization of the guinea-pig sinoatrial node compared with the rabbit sinoatrial node. J. Mol. Cell. Cardiol., 1985;17: 549–564.

    Article  PubMed  CAS  Google Scholar 

  15. Opthof, T., B. de Jonge, M. Masson-Pévet, H.J. Jongsma, and L.N. Bouman, Functional and morphological organization of the cat sinoatrial node. J. Mol. Cell. Cardiol., 1986;18: 1015–1031.

    Article  PubMed  CAS  Google Scholar 

  16. Opthof, T., B. de Jonge, H.J. Jongsma, and L.N. Bouman, Functional morphology of the pig sinoatrial node. J. Mol. Cell. Cardiol., 1987;19: 1221–1236.

    Article  PubMed  CAS  Google Scholar 

  17. Davies, M.J., Pathology of atrial arrhythmias, in The Conduction System of the Heart, M.J. Davies, R.H. Anderson, and A.E. Becker, Editors. London: Butterworths, 1983, pp. 203–215.

    Google Scholar 

  18. Alings, A.M.W., The aging sino-atrial node, Ph.D. thesis. University of Amsterdam, 1993.

    Google Scholar 

  19. Shiraishi, I., T. Takamatsu, T. Minamikawa, Z. Onouchi, and S. Fujita, Quantitative histological analysis of the human sinoatrial node during growth and aging. Circulation, 1992;85: 2176–2183.

    Article  PubMed  CAS  Google Scholar 

  20. Wybauw, R., Sur le point d’origine de la systole cardiaque dans l’oreillette droite. Arch. Int. Physiol., 1910;10: 78–89.

    Google Scholar 

  21. Lewis, T., B.S. Oppenheimer, and A. Oppenheimer, The site of origin of the mammalian heart beat: the pacemaker in the dog heart. Heart, 1910;2: 147–169.

    Google Scholar 

  22. Trautwein, W. and K. Zink, Űber Membran-und Aktionspotentiale einzelner Muskulfasern des Kalt-und Warmblüterherzens. Pflug. Arch., 1952;256: 68–84.

    Article  Google Scholar 

  23. West, T.C., Ultramicroelectrode recording from the cardiac pacemakers. J. Pharmacol. Exp. Ther., 1955;115: 282–290.

    Google Scholar 

  24. Yanagihara, D. and H. Irisawa, Inward current activated during hyperpolarization in the rabbit sinoatrial node. Pflüg. Arch., 1980;385: 11–19.

    Article  CAS  Google Scholar 

  25. DiFrancesco, D. and C. Ojeda, Properties of the current if in the sino-atrial node of the rabbit compared with those of the current iK, in Purkinje fibers. J. Physiol. (London), 1980;308: 353–367.

    CAS  Google Scholar 

  26. Reuter, H., Ion channels in cardiac cell membranes. Annu. Rev. Physiol., 1984;46: 473–484.

    Article  PubMed  CAS  Google Scholar 

  27. DiFrancesco, D., A. Ferroni, M. Mazzanti, and C. Tromba, Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sino-atrial node. J. Physiol. (London), 1986;377: 61–88.

    CAS  Google Scholar 

  28. Irisawa, H., H.F. Brown, and W. Giles, Cardiac pacemaking in the sinoatrial node. Physiol. Rev., 1993;73: 197–227.

    PubMed  CAS  Google Scholar 

  29. Trautwein, W. and K. Uchizono, Electrophysiologic study of the pacemaker in the sino-atrial node of the rabbit heart. Z. Zellforsch., 1963;61: 96–109.

    Article  PubMed  CAS  Google Scholar 

  30. Janse, M.J., J. Tranum-Jensen, A.G. Kléber, and F.J.L. van Capelle, Techniques and problems in correlating cellular electrophysiology and morphology in cardiac nodal tissue, in The Sinus Node, F.I.M. Bonke, Editor. The Hague: Nijhoff, 1978, pp. 183–194.

    Chapter  Google Scholar 

  31. Sano, T. and S. Yamagishi, Spread of excitation from the sinus node. Circ. Res., 1965;16: 423–431.

    Article  PubMed  CAS  Google Scholar 

  32. Steinbeck, G., M.A. Allessie, F.I.M. Bonke, and W.E.J.P. Lammers, The response of the sinus node to premature stimulation of the atrium studied with microelectrodes in isolated preparations of the rabbit heart, in The Sinus Node, F.I.M. Bonke, Editor. The Hague: Nijhoff, 1978, pp. 245–257.

    Google Scholar 

  33. Bouman, L.N., A.J.C. Mackaay, W.K. Bleeker, and A.E. Becker, Pacemaker shifts in the sinus node. Effects of vagal stimulation, temperature, and reduction of extracellular calcium, in The Sinus Node, F.I.M. Bonke, Editor. The Hague: Nijhoff, 1978, pp. 245–257.

    Chapter  Google Scholar 

  34. Bouman, L.N. and H.J. Jongsma, Structure and function of the SA node: a review. Eur. Heart J., 1986;7: 94–104.

    PubMed  CAS  Google Scholar 

  35. de Haan, R.L., Discussion on models of entrainment of cardiac cells, in Cardiac Rate and Rhythm, L.N. Boumans and H.J. Jongsma, Editors. The Hague: Nijhoff, 1982, pp. 359–361.

    Google Scholar 

  36. Rook, M.B., B. de Jonge, and H.J. Jongsma, Gap junction formation and functional interaction between neonatal rat cardiocytes in culture. J. Membr. Biol., 1990;118: 179–192.

    Article  PubMed  CAS  Google Scholar 

  37. Trabka, J.E., W. Coombs, M. Lemanski, M. Delmar, and J. Jalife, Immunohistochemical localization of gap junctional channels in adult mammalian sinus nodal cells- immunolocalization and electrophysiology. J. Cardiovasc. Electrophysiol., 1994;5: 125–137.

    Article  Google Scholar 

  38. Kodama, I. and M.R. Boyett, Regional differences in the electrical activity of the rabbit sinus node. Pflug. Arch., 1985;404: 214–226.

    Article  CAS  Google Scholar 

  39. Kirchhof, C.J., F.I.M. Bonke, M.A. Allessie, and W.E.J.P. Lammers, The influence of the atrial myocardium on impulse formation in the rabbit sinus node. Pflug. Arch., 1987;410: 198–203.

    Article  CAS  Google Scholar 

  40. Joyner, R.W. and F.J.L. van Capelle, Propagation through electrically coupled cells. How a small SA node drives a large atrium. Biophys. J., 1986;50: 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  41. Opthof, T., W.K. Bleeker, M. Masson-Pévet, H.J. Jongsma, and L.N. Bouman, Little-excitable transitional cells in the rabbit sinoatrial node: a statistical, morphological and electrophysiological study. Experientia, 1983;39: 1099–1101.

    Article  CAS  Google Scholar 

  42. Meek, W.J. and J.A.E. Eyster, Experiments on the origin and propagation of the impulse in the heart. IV. The effect of vagal stimulation and cooling on the location of the pacemaker within the sino-atrial node. Am. J. Physiol., 1914;34: 368–383.

    Google Scholar 

  43. Bouman, L.N., E.D. Gerlings, P.A. Biersteker, and F.I.M. Bonke, Pacemaker shift in the sino-atrial node during vagal stimulation. Pflug. Arch., 1968;302: 255–267.

    Article  CAS  Google Scholar 

  44. Mackaay, A.J.C., T. Opthof, W.K. Bleeker, H.J. Jongsma, and L.N. Bouman, Interaction of adrenaline and acetylcholine on sinus node function, in Cardiac Rate and Rhythm, L.N. Bouman and H.J. Jongsma, Editors. The Hague: Nijhoff, 1982, pp. 507–523.

    Chapter  Google Scholar 

  45. Hariman, R.J., B.F. Hoffman, and R.E. Naylor, Electrical activity from the sinus node region in conscious dogs. Circ. Res., 1980;47: 775–791.

    Article  PubMed  CAS  Google Scholar 

  46. Hariman, R.J., E. Krongrad, R.A. Boxer, F.O. Bowman, J.R. Malm, and B.F. Hoffman, Methods for recording electrograms from the sino-atrial node during cardiac surgery in man. Circulation, 1980;61: 1024–1029.

    Article  PubMed  CAS  Google Scholar 

  47. Boineau, J.P., R.B. Schuessler, C.R. Mooney, A.C. Wylds, C.B. Miller, R.D. Hudson, J.M. Borremans, and C.W. Brockus, Multicentric origin of the atrial depolarization wave: the pacemaker complex. Relation to dynamics of atrial conduction, P-wave changes and heart rate control. Circulation, 1978;58: 1036–1048.

    Article  PubMed  CAS  Google Scholar 

  48. Boineau, J.P., C.B. Miller, R.B. Schuessler, W.R. Roeske, L.J. Autry, A.C. Wylds, and D.A. Hill, Activation sequence and potential distribution maps demonstrating multicentric atrial impulse origin in dogs. Circ. Res., 1984;54: 332–347.

    Article  PubMed  CAS  Google Scholar 

  49. Schuessler, R.B., J.P. Boineau, and B.I. Bromberg, Origin of the sinus impulse. J. Cardiovasc. Electrophysiol., 1996;7: 263–274.

    Article  PubMed  CAS  Google Scholar 

  50. Cosio, F., A. Martín-Peňato, A. Pastor, A. Nuňez, M.A. Montero, C.P. Cantale, and S. Schames, Atrial activation mapping in sinus rhythm in the clinical electrophysiology laboratory: observations during Bachmann’s bundle block. J. Cardiovasc. Electrophysiol., 2004;15: 524–531.

    Article  PubMed  Google Scholar 

  51. Hoffman, B.F. and P.F. Cranefield, Electrophysiology of the Heart. New York: McGraw-Hill, 1960.

    Google Scholar 

  52. Rozanski, G.J. and S.L. Lipsius, Electrophysiology of functional subsidiary pacemakers in the canine right atrium. Am. J. Physiol., 1985;249: H594–H601.

    PubMed  CAS  Google Scholar 

  53. Kokobun, S., N. Nishimura, A. Noma, and H. Irisawa, The spontaneous action potential of rabbit atrioventricular node. Jpn. J. Physiol., 1980;30: 529–539.

    Article  Google Scholar 

  54. Vassalle, M., Electrogenic suppression of automaticity in sheep and dog Purkinje fibers. Circ. Res., 1970;27: 361–377.

    Article  PubMed  CAS  Google Scholar 

  55. Glitsch, H.G., Electrophysiology of the sodium-potassium-ATPase in cardiac cells. Physiol. Rev., 2001;81: 1791–1826.

    PubMed  CAS  Google Scholar 

  56. Lewis, T., Lectures on the Heart. New York, Shaw and sons, 1915.

    Google Scholar 

  57. Tranum-Jensen, J., The fine structure of the atrial and atrioventricular (AV) junctional specialized tissues of the rabbit heart, in The Conduction System of the Heart, H.J.J. Wellens, K.I. Lie, and M.J. Janse, Editors. Leiden: Stenfert-Kroese, 1976, pp. 55–99.

    Google Scholar 

  58. Janse, M.J. and R.H. Anderson, Specialized internodal pathways: fact or fiction? Eur. J. Cardiol., 1974;2: 117–136.

    Google Scholar 

  59. Puech, P., M. Esclavissat, D. Sodi-Pallares, and F. Cineros, Normal auricular activation in the dog’s heart. Am. Heart J., 1954;47: 174–191.

    Article  PubMed  CAS  Google Scholar 

  60. Yamada, K., M. Horiba, Y. Sakaida, M. Okajima, H. Horibe, H. Muraki, T. Kobayashi, A. Miyauchi, H. Oishi, A. Nonogawa, K. Ishikawa, and J. Toyama, Origination and transmission of impulse in right atrium. Jpn. Heart J., 1965;6: 71–97.

    Article  Google Scholar 

  61. Spach, M.S., T.D. King, R.C. Barr, D.E. Boaz, M.N. Morrow, and S. Herman-Giddens, Electrical potential distribution surrounding the atria during depolarization and repolarization in the dog. Circ. Res., 1969;24: 857–873.

    Article  PubMed  CAS  Google Scholar 

  62. Hamlin, R.L., D.L. Smetzer, T. Senta, and C.R. Smith, Atrial activation paths and P waves in horses. Am. J. Physiol., 1970;219: 306–313.

    PubMed  CAS  Google Scholar 

  63. Durrer, D., R.Th. van Dam, G.E. Freud, M.J. Janse, F.L. Meijler, and R.C. Arzbaecher, Total excitation of the isolated human heart. Circulation, 1970;41: 895–912.

    Article  Google Scholar 

  64. Goodman, D., A.B.M. van der Steen, and R.T.H. van Dam, Endocardial and epicardial activation pathways of the canine right atrium. Am. J. Physiol., 1971;220: 1–11.

    PubMed  CAS  Google Scholar 

  65. Spach, M.S., M. Lieberman, J.G. Scott, R.C. Barr, E.A. Johnson, and J.M. Kootsey, Excitation sequences of the atrial septum and the AV node in isolated hearts of dog and rabbit. Circ. Res., 1971;29: 156–172.

    Article  PubMed  CAS  Google Scholar 

  66. Wittig, J.H., M.R. de Leval, and G. Stark, Intraoperative mapping of atrial activation before, during and after the mustard operation. J. Thorac. Cardiovasc. Surg., 1977;73: 1–13.

    PubMed  CAS  Google Scholar 

  67. De Ponti, R., S.Y. Ho, J.A. Salerno-Uriarte, M. Tritto, and G. Spadacini, Electroanatomic analysis of sinus impulse propagation in normal human atria. J. Cardiovasc. Electrophysiol., 2002;13: 1–10.

    Article  Google Scholar 

  68. Markides, V., R.J. Schilling, S.Y. Ho, A.W.C. Chow, D.W. Davies, and N.S. Peters, Characterization of left atrial activation in the intact human heart. Circulation, 2003;107: 733–739.

    Article  PubMed  Google Scholar 

  69. Betts, T.R., P.R. Roberts, and J.M. Morgan, High-density mapping of left atrial endocardial activation during sinus rhythm and coronary sinus pacing in patients with paroxysmal atrial fibrillation. J. Cardiovasc. Electrophysiol., 2004;15: 1111–1117.

    Article  PubMed  Google Scholar 

  70. James, T.N., The connecting pathways between the sinus node and the A–V node and between the right and left atrium of the human heart. Am. Heart J., 1963;66: 498–508.

    Article  PubMed  CAS  Google Scholar 

  71. Rossi, L., Interatrial, internodal, and dual reentrant atrioventricular nodal pathways: an anatomical update of arrhythmogenic substrates. Cardiologia, 1996;41: 129–134.

    PubMed  CAS  Google Scholar 

  72. Sanchez-Quintana, D., D.W. Davies, S. Yen Ho, P. Oslizlok, and R.H. Anderson , Architecture of the atrial musculature in and around the triangle of Koch: its potential relevance to atrioventricular nodal reentry. J. Cardiovasc. Electrophysiol., 1997;8: 1396–1407.

    Article  PubMed  CAS  Google Scholar 

  73. Inoue, S. and A.E. Becker, Posterior extensions of the human compact atrioventricular node: a neglected anatomical feature of potential clinical significance. Circulation, 1998;97: 188–193.

    Article  PubMed  CAS  Google Scholar 

  74. Chauvin, M., D.C. Shah, M. Haïssaguerre, L. Marcellin, and C. Brechenmacher, The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation, 2001;101: 647–652.

    Article  Google Scholar 

  75. Moore, E.N., S.L. Jomain, J.H. Stuckey, J.W. Buchanan, and B.F. Hoffman, Studies on ectopic atrial rhythms in dogs. Am. J. Cardiol., 1967;19: 676–685.

    Article  PubMed  CAS  Google Scholar 

  76. Moore, E.N., J. Melbin, J.F. Spear, and J.D. Hill, Sequence of atrial excitation in the dog during antegrade and retrograde activation. J. Electrocardiol., 1971;4: 283–290.

    Article  PubMed  CAS  Google Scholar 

  77. Waldo, A.L., K.J. Vittikainen, and B.F. Hoffman, The sequence of retrograde atrial activation in the canine heart: correlation with positive and negative retrograde P waves. Circ. Res., 1975;37: 156–163.

    Article  PubMed  CAS  Google Scholar 

  78. Thorel, C., Vorläufige Mitteilung über eine besondere Muskelverbindung zwischen dem Cava superior und die Hissischen Bundel. Münch med Wschr 1908;56: 2159–2164.

    Google Scholar 

  79. Bericht über die Verhandlungen der XIV Tagung der Deutschen pathologischen Gesellschaft in Erlangen vom 4–6 April 1910. Z allg Path path Anat 1910;21: 433–496.

    Google Scholar 

  80. Netter, F.H., The Heart. The Ciba Collection of Medical Illustrations, vol. 5, 1969, p. 13.

    Google Scholar 

  81. Pastelin, G., R. Mendez, and G.K. Moe, Participation of atrial specialized conduction pathways in atrial flutter. Circ. Res., 1978;42: 386–393.

    Article  PubMed  CAS  Google Scholar 

  82. Janse, M.J. and R.H. Anderson, Specialized internodal atrial pathways. Fact or fiction? Eur. J. Cardiol., 1974;2: 117–136.

    Google Scholar 

  83. Spach, M.S., W.T. Miller, R.C. Barr, and D.B. Geselowitz, Electrophysiology of the internodal pathways: determining the difference between anisotropic cardiac muscle and a specialized tract system, in Physiology of Atrial Pacemakers and Conductive Tissues, R.C. Little, Editor. Mount Kisco, New York: Futura Publishing Company, 1980, pp. 367–380.

    Google Scholar 

  84. Janse, M.J., R.H. Anderson, M.A. McGuire, and S.Y. Ho, “AV nodal” reentry: Part I: “AV nodal” reentry revisited. J. Cardiovasc. Electrophysiol., 1993;4: 561–572.

    Article  PubMed  CAS  Google Scholar 

  85. Tawara, S., Das Reizleitungssystem des Säugetierherzens. Eine anatomisch-histologische Studie über das Atrioventrikularbündel und die Purkinjeschen Fäden. Jena: Fischer, 1906.

    Google Scholar 

  86. Anderson, R.H., Histologic and histochemical evidence concerning the presence of morphologically distinct cellular zones within the rabbit atrioventricular node. Anat. Rec., 1972;173: 7–23.

    Article  PubMed  CAS  Google Scholar 

  87. Paes de Carvalho, A. and D.F. de Almeida, Spread of activity through the atrioventricular node. Circ. Res., 1960;8: 801–809.

    Article  Google Scholar 

  88. Becker, A.E. and R.H. Anderson, Morphology of the human atrioventricular junctional area, in The Conduction System of the Heart: Structure, Function and Clinical Implication, H.J.J. Wellens, K.I. Lie, and M.J. Janse, Editors. Philadelphia, PA: Lea and Febiger, 1976, pp. 263–286.

    Google Scholar 

  89. Anderson, R.H., M.J. Janse, F.J.L. van Capelle, J. Billete, A.E. Becker, and D. Durrer, A combined morphological and electrophysiological study of the atrioventricular node of the rabbit heart. Circ. Res., 1974;35: 909–922.

    Article  PubMed  CAS  Google Scholar 

  90. McGuire, M.A., J.M.T. de Bakker, J.T. Vermeulen, A.F. Moorman, P. Loh, B. Thibault, J.L.M. Vermeulen, A.E. Becker, and M.J. Janse, Atrioventricular junctional tissue. Discrepancy between histological and electrophysiological characteristics. Circulation, 1996;94: 571–577.

    Article  PubMed  CAS  Google Scholar 

  91. Petrecca, K., F. Amellal, D.W. Laird, S.A. Cohen, and A. Shrier, Sodium channel distribution within the rabbit atrioventricular node and surrounding myocardium as analyzed with confocal microscopy. J. Physiol., 1997;501: 263–274.

    Article  PubMed  CAS  Google Scholar 

  92. Spach, M.S., M. Lieberman, J.G. Scott, R.C. Barr, E.A. Johnson, and J.M. Kootsey, Excitation sequences of the atrial septum and the AV node in isolated hearts of the dog and rabbit. Circ. Res., 1971;29: 156–172.

    Article  PubMed  CAS  Google Scholar 

  93. McGuire, M.A., J.M.T. de Bakker, J.T. Vermeulen, T. Opthof, A.E. Becker, and M.J. Janse, Origin and significance of double potentials near the atrioventricular node. Correlation of extracellular potentials, intracellular potentials, and histology. Circulation, 1994;89: 2351–2360.

    Article  PubMed  CAS  Google Scholar 

  94. Janse, M.J., F.J.L. van Capelle, R.H. Anderson, P. Touboul, and J. Billette, Electrophysiology and structure of the atrioventricular node of the rabbit heart, in The Conduction System of the Heart, H.J.J. Wellens, K.I. Lie, and M.J. Janse, Editors. Leiden: Stenfert Kroese, 1976, pp. 296–315.

    Google Scholar 

  95. Van Capelle, F.J.L., M.J. Janse, P.J. Varghese, G.E. Freud, C. Mater, and D. Durrer, Spread of excitation in the atrioventricular node of isolated rabbit hearts studied by multiple microelectrode recording. Circ. Res., 1972;31: 602–616.

    Article  PubMed  Google Scholar 

  96. Janse, M.J., Influence of the direction of the atrial wave front on A–V nodal transmission in isolated hearts of rabbits. Circ. Res., 1969;25: 439–449.

    Article  PubMed  CAS  Google Scholar 

  97. Mines, G.R., On dynamic equilibrium in the heart. J. Physiol., 1913;46: 349–382.

    PubMed  CAS  Google Scholar 

  98. White, P.D., A study of atrioventricular rhythm following auricular flutter. Arch. Intern. Med., 1915;16: 517–535.

    Article  Google Scholar 

  99. Scherf, D. and C. Shookhoff, Experimentelle Untersuchungen über die “Umkehr-Extrasystole” (reciprocating beats). Wien Arch Inn Med 1926;12: 501–529.

    Google Scholar 

  100. Moe, G.K., J.B. Preston, and H.J. Burlington, Physiologic evidence for a dual A–V transmission system. Circ. Res., 1956;4: 357–375.

    Article  PubMed  CAS  Google Scholar 

  101. Rosenblueth, A., Ventricular “echoes.” Am. J. Physiol., 1958; 195: 53–60.

    PubMed  CAS  Google Scholar 

  102. Kistin, A.D., Atrial reciprocating rhythm. Circulation, 1965;32: 697–707.

    Article  Google Scholar 

  103. Puech, P., La conduction réciproque par le noeud de Tawara. Bases expérimentales et aspects cliniques. Ann. Cardiol. Angeiol., 1970;19: 21–40.

    CAS  Google Scholar 

  104. Schuilenburg, R.M. and D. Durrer, Atrial echo beats in the human heart elicited by induced atrial premature beats. Circulation, 1968;37: 680–693.

    Article  PubMed  CAS  Google Scholar 

  105. Schuilenburg, R.M. and D. Durrer, Ventricular echo beats in the human heart elicited by induced ventricular premature beats. Circulation, 1968;40: 337–347.

    Article  Google Scholar 

  106. Bigger, J.T., Jr. and B.N. Goldreyer, The mechanism of supraventricular tachycardia. Circulation, 1970;42: 673–688.

    Article  PubMed  Google Scholar 

  107. Mendez, C., J. Han, P.D. Garcia de Jalon, and G.K. Moe, Demonstration of a dual AV conduction system in the isolated rabbit heart. Circ. Res., 1965;19: 562–581.

    Article  Google Scholar 

  108. Mignone, R.J. and A.G. Wallace, Ventricular echoes. Evidence for dissociation and reentry within the A–V node. Circ. Res., 1966;19: 638–649.

    Article  PubMed  CAS  Google Scholar 

  109. Mendez, C. and G.K. Moe, Demonstration of a dual AV nodal conduction system in the isolated rabbit heart. Circ. Res., 1966;19: 378–393.

    Article  PubMed  CAS  Google Scholar 

  110. Moe, G.K., W. Cohen, and R.L. Vick, Experimentally induced paroxysmal A-V nodal tachycardia in the dog. Am. Heart J., 1963;65: 87–92.

    Article  Google Scholar 

  111. Janse, M.J., F.J.L. van Capelle, G.E. Freud, and D. Durrer, Circus movement within the AV node as a basis for supraventricular tachycardia as shown by multiple microelectrode recordings in the isolated rabbit heart. Circ. Res., 1971;28: 403–414.

    Article  PubMed  CAS  Google Scholar 

  112. Wit, A.L., B.N. Goldreyer, and A.N. Damato, An in vitro model of paroxysmal supraventricular tachycardia. Circulation, 1971;43: 862–875.

    Article  PubMed  CAS  Google Scholar 

  113. Coumel, P., C. Cabrol, A. Fabiato, R. Gourgon, and R. Slama, Tachycardie permanente par rythme réciproque. Arch. Mal. Coeur Vaiss., 1967;60: 1830–1864.

    Google Scholar 

  114. McGuire, M.A., J.P. Bourke, M.C. Robotin, I.C. Johnson, W. Meldrum-Hanna, G.R. Nunn, J.B. Uther, and D.L. Ross, High resolution mapping in Koch’s triangle using sixty electrodes in humans with atrioventricular nodal (AV nodal) reentrant tachycardia. Circulation, 1993;88: 2315–2328.

    Article  PubMed  CAS  Google Scholar 

  115. Sung, R.J., H.L. Waxman, S. Saksena, and Z. Juma, Sequence of retrograde atrial activation in patients with dual atrioventricular nodal pathways. Circulation, 1981;64: 1059–1067.

    Article  PubMed  CAS  Google Scholar 

  116. Ross, D.L., D.C. Johnson, A.R. Denniss, M.J. Cooper, D.A. Richards, and J.B. Uther, Curative surgery for atrioventricular junctional (“AV nodal”) reentrant tachycardia. J. Am. Coll. Cardiol., 1985;6: 1383–1392.

    Article  PubMed  CAS  Google Scholar 

  117. Haissaguerre, M., F. Gaita, B. Fischer, D. Commenges, P. Montserrat, P. d’Ivernois, P. Lemetayer, and J. Warin, Elimination of atrioventricular nodal reentrant tachycardia using discrete slow potentials to guide application of radiofrequency energy. Circulation, 1992;85: 2162–2175.

    Article  PubMed  CAS  Google Scholar 

  118. Ho, S.Y., J.M. McComb, C.D. Scott, and R.H. Anderson, Morphology of the cardiac conduction system in patients with electrophysiologically proven dual atrioventricular pathways. J. Cardiovasc. Electrophysiol., 1993;4: 504–512.

    Article  PubMed  CAS  Google Scholar 

  119. Nikolski, V.P., S.A. Jones, M.K. Lancaster, M.R. Boyett, and I.R. Efimov, Cx43 and dual-pathway electrophysiology of the atrioventricular node and atrioventricular nodal reentry. Circ. Res., 2003;92: 469–475.

    Article  PubMed  CAS  Google Scholar 

  120. Josephson, M.E. and J.M. Miller, Atrioventricular nodal reentry: evidence supporting an intranodal location. Pacing Clin. Electrophysiol., 1993;16: 599–614.

    Article  PubMed  CAS  Google Scholar 

  121. Mendez, C., J. Han, P.D. Garcia de Jalon, and G.K. Moe, Some characteristics of ventricular echoes. Circ. Res., 1965;16: 562–581.

    Article  PubMed  CAS  Google Scholar 

  122. Iinuma, H., L.S. Dreifus, T. Mazgalev, R. Price, and E.L. Michelson, Role of the perinodal region in atrioventricular nodal reentry: evidence in an isolated rabbit heart preparation. J. Am. Coll. Cardiol., 1983;2: 465–473.

    Article  PubMed  CAS  Google Scholar 

  123. Mazgalev, T., L.S. Dreifus, J. Bianchi, and E.L. Michelson, The mechanism of AV junctional reentry: role of the atrionodal junction. Anat. Rec., 1981;202: 179–188.

    Article  Google Scholar 

  124. Loh, P., J.M.T. de Bakker, M. Hocini, B. Thibault, R.N.W. Hauer, and M.J. Janse, Reentrant pathway during ventricular echoes is confined to the atrioventricular node. Circulation, 1999;100: 1346–1353.

    Article  PubMed  CAS  Google Scholar 

  125. Loh, P., S.Y. Ho, T. Kawara, R.N.W. Hauer, M.J. Janse, G. Breithardt, and J.M.T. de Bakker, Reentrant circuits in the canine AV node during atrial and ventricular echoes: electrophysiologic and histologic correlation. Circulation, 2003;108: 231–238.

    Article  PubMed  Google Scholar 

  126. Bukauskas, F.F. and R.P. Veteikis, Passive electrical properties of the atrioventricular region of the rabbit heart. Biofizika, 1977;22: 499–504.

    PubMed  CAS  Google Scholar 

  127. De Mello, W.C., Passive electrical properties of the atrioventricular node. Pflug. Arch., 1977;371: 135–139.

    Article  Google Scholar 

  128. Ikeda, N., J. Toyama, T. Shimizu, I. Kodama, and K. Yamada, The role of electrical uncoupling in the genesis of atrioventricular conduction disturbance. J. Mol. Cell. Cardiol., 1980;12: 809–826.

    Article  PubMed  CAS  Google Scholar 

  129. Kokobun, S., M. Nishimura, A. Noma, and H. Irisawa, Membrane currents in the atrioventricular node. Pflug. Arch., 1982;393: 15–22.

    Article  Google Scholar 

  130. Kléber, A.G. and C.B. Riegger, Electrical constants of arterially perfused rabbit papillary muscle. J. Physiol., 1987;385: 307–324.

    PubMed  Google Scholar 

  131. Cranefield, P.F., B.F. Hoffman, and A. Paes de Carvalho, Effects of acetylcholine on single fibers of the atrio-ventricular node. Circ. Res., 1959;7: 19–23.

    Article  PubMed  CAS  Google Scholar 

  132. Mazgalev, T., L.S. Dreifus, H. Iinuma, and E.L. Michelson, Effects of the site and timing of atrio-ventricular input on atrio-ventricular conduction in the isolated perfused rabbit heart. Circulation, 1984;70: 748–759.

    Article  PubMed  CAS  Google Scholar 

  133. Zipes, D.P., C. Mendez, and G.K. Moe, Evidence for summation and voltage dependency in rabbit atrioventricular nodal fibers. Circ. Res., 1973;32: 170–177.

    Article  PubMed  CAS  Google Scholar 

  134. Gettes, L.S. and H. Reuter, Slow recovery from inactivation of inward currents in mammalian myocardial fibres. J. Physiol., 1974;240: 703–724.

    PubMed  CAS  Google Scholar 

  135. Billette, J., M.J. Janse, F.J.L. van Capelle, R.H. Anderson, P. Touboul, and D. Durrer, Cycle-length-dependent properties of AV nodal activation in rabbit hearts. Am. J. Physiol., 1976;231: 1129–1139.

    PubMed  CAS  Google Scholar 

  136. Truex, R.C., Comparative anatomy and functional considerations of the cardiac conduction system, in The Specialized Tissues of the Heart, A. Paes de Carvalho, W.C. De Mello, and B.F. Hoffman, Editors. Amsterdam: Elsevier, 1961, pp. 22–43.

    Google Scholar 

  137. Demoulin, G.C. and H.E. Kulbertus, Histopathological examination of concept of left hemiblock. Brit. Heart J., 1972;34: 807–814.

    Article  PubMed  CAS  Google Scholar 

  138. Rosenbaum, M.B., M.V. Elizari, and J.G. Lazzari, The Hemiblocks:New Concepts of Intraventricular Conduction Based on Human Anatomical, Physiological and Clinical Studies. Oldsmar: Tampa Tracings, 1970.

    Google Scholar 

  139. Scher, A. and A.C. Young, Ventricular depolarization and the genesis of the QRS. Ann. NY Acad. Sci., 1957;65: 766–778.

    Article  Google Scholar 

  140. Le Grice, I.J., B.H. Smaill, L.Z. Chai, S.G. Edgar, J.B. Gavin, and P.J. Hunter, Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol., 1995;269: H571–H582.

    Google Scholar 

  141. Nagao, K., J. Toyama, I. Kodama, and K. Yamada, Role of the conducting system in the endocardial excitation spread in the right ventricle. Am. J. Cardiol., 1981;48: 864–870.

    Article  PubMed  CAS  Google Scholar 

  142. Veenstra, R.D., R.W. Joyner, and D.A. Rawling, Purkinje and ventricular activation sequences of canine papillary muscle. Effects of quinidine and calcium on the Purkinje-muscle delay. Circ. Res., 1984;54: 500–515.

    Article  PubMed  CAS  Google Scholar 

  143. Overholt, E.D., R.W. Joyner, R.D. Veenstra, D.A. Rawling, and R. Wiedmann, Unidirectional block between Purkinje and ventricular muscle layers of papillary muscle. Am. J. Physiol., 1984;247: H584–H595.

    PubMed  CAS  Google Scholar 

  144. Mendez, C., W.J. Mueller, and X. Urguiaga, Propagation of impulses across the Purkinje fiber-muscle junctions in the dog. Circ. Res., 1970;36: 135–150.

    Article  Google Scholar 

  145. Joyner, R.W., R.D.E. Veenstra, D.A. Rawling, and A. Chorro, Propagation through electrically coupled cells. Effects of a resistive barrier. Biophys. J., 1984;45: 1017–1025.

    Article  PubMed  CAS  Google Scholar 

  146. Rawling, D.A., R.W. Joyner, and E.D. Overholt, Variations in the functional electrical coupling between the subendocardial Purkinje and ventricular layers of the canine left ventricle. Circ. Res., 1985;57: 252–261.

    Article  PubMed  CAS  Google Scholar 

  147. Joyner, R.W., Effects of the discrete pattern of electrical coupling on propagation through an electrical syncytium. Circ. Res., 1982;50: 192–200.

    Article  PubMed  CAS  Google Scholar 

  148. Alanis, J., D. Benitez, and G. Pilar, A functional discontinuity between the Purkinje and ventricular muscle cells. Acta Physiol. Lat. Am., 1961;11: 171–183.

    PubMed  CAS  Google Scholar 

  149. Tranum Jensen, J., A.A.M. Wilde, J.T. Vermeulen, and M.J. Janse, Morphology of electrophysiologically identified junctions between Purkinje fibers and ventricular muscle in rabbit and pig hearts. Circ. Res., 1991;69: 429–437.

    Article  PubMed  CAS  Google Scholar 

  150. Martinez-Palomo, A., J. Alanis, and D. Benitez, Transitional cardiac cells of the conductive system of the dog heart. Distinguishing morphological and electrophysiological features. J. Cell Biol., 1970;47: 1–17.

    Article  PubMed  CAS  Google Scholar 

  151. Kaneko, Y., Y. Taniguchi, T. Nakajima, M. Manita, T. Ito, M. Akiyama, and M. Kurabayahi, Myocardial bundles with slow conduction properties are present on the left interventricular septal surface of normal human hearts. J. Cardiovasc. Electrophysiol., 2004;15: 1010–1018.

    Article  PubMed  Google Scholar 

  152. Sicouri, S. and C. Antzelevitch, A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circ. Res., 1991;68: 1729–1741.

    Article  PubMed  CAS  Google Scholar 

  153. Sicouri, S., J. Fish, and C. Antzelevitch, Distribution of M cells in the canine ventricle. J. Cardiovasc. Electrophysiol., 1994;5: 824–837.

    Article  PubMed  CAS  Google Scholar 

  154. Sicouri, S. and C. Antzelevitch, Electrophysiologic characteristics of M cells in the canine left ventricular free wall. J. Cardiovasc. Electrophysiol., 1995;6: 591–603.

    Article  PubMed  CAS  Google Scholar 

  155. Anyukhovsky, E.P., E.A. Sosunov, and M.R. Rosen, Regional differences in electrophysiological properties of epicardium, midmyocardium, and endocardium: in vitro and in vivo correlations. Circulation, 1996;94: 1981–1988.

    Article  PubMed  CAS  Google Scholar 

  156. Liu, D.-W. and C. Antzelevitch, Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. Circ. Res., 1995;76: 351–365.

    Article  PubMed  CAS  Google Scholar 

  157. Rodriguez-Sinovas, A., J. Cinca, A. Tapias, L. Armadans, M. Tresanchez, and J. Soler-Soler, Lack of evidence of m cells in porcine lefty ventricular myocardium. Cardiovasc. Res., 1997;33: 307–313.

    Article  PubMed  CAS  Google Scholar 

  158. Tan, R.C. and R.W. Joyner, Electrotonic influences on action potentials from isolated cells. Circ. Res., 1990;67: 1071–1081.

    Article  PubMed  CAS  Google Scholar 

  159. Anyukhovsky, E.P., E.A. Sosunov, R.Z. Gainullin, and M.R. Rosen, The controversial M cell. J. Cardiovasc. Electrophysiol., 1999;10: 244–260.

    Article  PubMed  CAS  Google Scholar 

  160. Van Dam, R.Th. and D. Durrer, Experimental study on the intramural distribution of the excitability cycle and on the form of the epicardial T wave in the dog heart in situ. Am. Heart J., 1961;61: 537–542.

    Article  PubMed  CAS  Google Scholar 

  161. Burgess, M.J., L.S. Green, K. Millar, R. Wyatt, and J.A. Abildskov, The sequence of normal ventricular recovery. Am. Heart J., 1972;84: 660–669.

    Article  PubMed  CAS  Google Scholar 

  162. Janse, M.J., The effect of changes in heart rate on the refractory period of the heart, Ph.D. thesis. University of Amsterdam, Amsterdam, The Netherlands: Mondeel Offset Drukkerij, 1971.

    Google Scholar 

  163. Janse, M.J., A. Capucci, R. Coronel, and M.A. Fabius, Variability of recovery of excitability in the normal canine and ischemic porcine heart. Eur. Heart J., 1985;6(Suppl. D): 41–52.

    Article  PubMed  Google Scholar 

  164. Bauer, A., R. Becker, K.D. Freigang, J.C. Senges, F. Voss, A. Hansen, M. Müller, H.J. Lang, U. Gerlach, A. Busch, J. Kraft, and W. Schöls, Rate-and site-dependent effects of propafenone, dofetilide, and the new IKs blocking agent chromanolol 293b on individual muscle layers of the intact heart. Circulation, 1999;100: 2184–2190.

    Article  PubMed  CAS  Google Scholar 

  165. Chinushi, M., M. Tagawa, H. Karai, T. Washizuka, A. Abe, H. Furushima, and Y. Aizawa, Correlation between the effective refractory period and activation-recovery-interval calculated from the intracardiac unipolar electrograms of humans with an without dl-sotalol treatment. Jpn. Circ. J., 2001;65: 702–706.

    Article  PubMed  CAS  Google Scholar 

  166. Taggart, P., P.M. Sutton, T. Opthof, R. Coronel, R. Trimlett, W. Pugsley, and P. Kallis, Transmural repolarisation in the left ventricle in humans during normoxia an ischaemia. Cardiovasc. Res., 2001;50: 454–462.

    Article  PubMed  CAS  Google Scholar 

  167. Conrath, C., R. Wilders, R. Coronel, J.M.T. de Bakker, P. Taggart, J. de Groot, and T. Opthof, Intercellular coupling through gap junctions masks M cells in the human heart. Cardiovasc. Res., 2004;62: 407–414.

    Article  PubMed  CAS  Google Scholar 

  168. Janse, M.J., E.A. Sosunov, R. Coronel, T. Opthof, E.P. Anyukhovsky, J.M.T. de Bakker, A.N. Plotnikov, I.N. Shlapakova, P. Danilo, J.G.P. Tijssen, and M.R. Rosen, Repolarization gradients in the canine left ventricle before and after induction of short-term cardiac memory. Circulation, 2005;112: 1711–1718.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

Janse, M.J. (2010). Activation of the Heart. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics