Skip to main content

The Signal-Averaged Electrocardiogram

  • Reference work entry
Comprehensive Electrocardiology

1 39.1 Introduction

The signal averaging technique is applied to electrocardiographic recordings to reduce extraneous noise, which masks low-amplitude bioelectric signals from the heart. Although modern amplifier design and good recording techniques can minimize certain types of noise, other sources of noise, such as muscle activity, obscure low amplitude potentials. With signal averaging, the noise level can be reduced so that repetitive waveforms at the microvolt level can be reliably detected and analyzed. The noise level after averaging is, in most studies, below 1 μV, the equivalent of 1/100 of a millimeter at a standard ECG display scale.

This chapter discusses the methodology of signal averaging and its use in studying high-frequency components of the QRST complex, manifested either as ventricular late potentials (Sects. 39.3 through 39.7) or within the QRS complex (Sects. 39.8 and 39.9). Signal averaging is useful also in other ECG applications such as exercise testing (see Chap. 36...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sörnmo, L. and P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Applications. Amsterdam: Elsevier (Academic Press), 2005.

    Google Scholar 

  2. Hombach, V., V. Braun, H.W. Hopp, et al., The applicability of the signal averaging technique in clinical cardiology. Clin. Cardiol., 1982;5: 107–124.

    Article  PubMed  CAS  Google Scholar 

  3. Ros, H.H., A.S.M. Koeleman, and T.J. Akker, The technique of signal averaging and its practical application in the separation of atrial and His Purkinje activity, in Signal Averaging Technique in Clinical Cardiology, V. Hombach and H.H. Hilger, Editors. Stuttgart: Schattauer, 1981, p. 3.

    Google Scholar 

  4. Rompelman, O. and H.H. Ros, Coherent averaging technique: a tutorial review. Part 1: noise reduction and the equivalent filter. Part 2: trigger jitter, overlapping responses and nonperiodic stimulation. J. Biomed. Eng., 1986;8: 24–35.

    Article  PubMed  CAS  Google Scholar 

  5. Laciar, E., R. Jané, and D.H. Brooks, Improved alignment method for noisy high-resolution ECG and Holter records using multiscale cross-correlation. IEEE Trans. Biomed. Eng., 2003;50: 344–353.

    Article  PubMed  Google Scholar 

  6. Simson, M.B., Use of signals in the terminal QRS complex to identify patients with ventricular tachycardia after myocardial infarction. Circulation, 1981;64: 235–242.

    Article  PubMed  CAS  Google Scholar 

  7. Berbari, E.J. and P. Lander, Principles of noise reduction, in High-Resolution Electrocardiography, N. El-Sherif and G. Turitto, Editors. Armonk: Futura, 1992, pp. 51–66.

    Google Scholar 

  8. Plonsey, R., Bioelectric Phenomena. New York: McGraw-Hill, 1969, pp. 281–299.

    Google Scholar 

  9. Kienzle, M.G., R.A. Falcone, and M.B. Simson, Alterations in the initial portion of the signal averaged QRS complex in acute myocardial infarction with ventricular tachycardia. Am. J. Cardiol., 1988;61: 91–103.

    Article  Google Scholar 

  10. Atarius, R. and L. Sörnmo, Maximum likelihood analysis of cardiac late potentials. IEEE Trans. Biomed. Eng., 2006;43: 60–68.

    Article  Google Scholar 

  11. Steinberg, J.S. and J.T. Bigger, Importance of the endpoint of noise reduction in analysis of the signal-averaged electrocardiogram. Am. J. Cardiol., 1989;63: 556–560.

    Article  PubMed  CAS  Google Scholar 

  12. Boineau, J.P. and J.L. Cox, Slow ventricular activation in acute myocardial infarction: A source of reentrant premature ventricular contraction. Circulation, 1973;48(4): 702–713.

    Article  PubMed  CAS  Google Scholar 

  13. Waldo, A.L. and G.A. Kaiser, A study of ventricular arrhythmias associated with acute myocardial infarction in the canine heart. Circulation, 1973;47(6): 1222–1228.

    Article  PubMed  CAS  Google Scholar 

  14. El-Sherif, N., B.J. Scherlag, and R. Lazzara, Electrode catheter recordings during malignant ventricular arrhythmias following experimental acute myocardial ischemia. Circulation, 1975;51(6): 1003–1014.

    Article  PubMed  CAS  Google Scholar 

  15. El-Sherif, N., B.J. Scherlag, R. Lazzara, and R.R. Hope, Re-entrant ventricular arrhythmias in the late myocardial infarction period. 1. Conduction characteristics in the infarction zone. Circulation, 1977;55(5): 686–702.

    Article  PubMed  CAS  Google Scholar 

  16. El-Sherif, N., R.R. Hope, B.J. Scherlag, and R. Lazzara, Re-entrant ventricular arrhythmias in the late myocardial infarction period. 2. Patterns of initiation and termination of re-entry. Circulation, 1977;55(5): 702–719.

    Article  PubMed  CAS  Google Scholar 

  17. Simson, M.B., W.J. Untereker, S.R. Spielman, L.N. Horowitz, N.H. Marcus, R.A. Falcone, et al., The relationship between late potentials on the body surface and directly recorded fragmented electrograms in patients with ventricular tachycardia. Am. J. Cardiol., 1983;51(1): 105–112.

    Article  PubMed  CAS  Google Scholar 

  18. Berbari, E.J., B.J. Scherlag, R.R. Hope, and R. Lazzara, Recording from the body surface of arrhythmogenic ventricular activity during the S-T segment. Am. J. Cardiol., 1978;41(4): 697–702.

    Article  PubMed  CAS  Google Scholar 

  19. Josephson, M.E., L.N. Horowitz, and A. Farshidi, Continuous local electrical activity. A mechanism of recurrent ventricular tachycardia. Circulation, 1978;57(4): 659–665.

    Article  PubMed  CAS  Google Scholar 

  20. Breithardt, G., R. Becker, L. Seipel, R.R. Abendroth, and J. Ostermeyer, Non-invasive detection of late potentials in man–a new marker for ventricular tachycardia. Eur. Heart J., 1981;2(1): 1–11.

    PubMed  CAS  Google Scholar 

  21. Fontaine, G., G. Guiraudon, R. Frank, et al., Stimulation studies and epicardial mapping in ventricular tachycardia. Study of mechanisms and selection for surgery, in Reentrant Arrhythmias, H. Kulbertus, Editor. Lancaster: MTP; 1977, p. 334.

    Google Scholar 

  22. Rozanski, J.J., D. Mortara, R.J. Myerburg, and A. Castellanos, Body surface detection of delayed depolarizations in patients with recurrent ventricular tachycardia and left ventricular aneurysm. Circulation, 1981;63(5): 1172–1178.

    Article  PubMed  CAS  Google Scholar 

  23. Simson, M.B., D. Euler, and E.L. Michelson, Detection of delayed ventricular activation on the body surface in dogs. Am. J. Physiol., 1981;241(3): H363–H369.

    PubMed  CAS  Google Scholar 

  24. Denniss, A.R., D.A. Richards, D.V. Cody, P.A. Russell, A.A. Young, D.L. Ross, et al., Correlation between signal-averaged electrocardiogram and programmed stimulation in patients with and without spontaneous ventricular tachyarrhythmias. Am. J. Cardiol., 1987;59(6): 586–590.

    Article  PubMed  CAS  Google Scholar 

  25. Breithardt, G., M. Borggrefe, U. Karbenn, R.R. Abendroth, H.L. Yeh, and L. Seipel, Prevalence of late potentials in patients with and without ventricular tachycardia: correlation and angiographic findings. Am. J. Cardiol., 1982;49(8): 1932.

    Article  PubMed  CAS  Google Scholar 

  26. Kanovsky, M.S., R.A. Falcone, C.A. Dresden, M.E. Josephson, and M.B. Simson, Identification of patients with ventricular tachycardia after myocardial infarction: signal-averaged electrocardiogram, Holter monitoring, and cardiac catherization. Circulation, 1984;70(2): 264–270.

    Article  PubMed  CAS  Google Scholar 

  27. Gomes, J.A., S.L. Winters, M. Martinson, J. Machac, D. Stewart, and A. Targonski, The prognostic significance of quantitative signal-averaged variables relative to clinical variables, site of myocardial infarction, ejection fraction and ventricular premature beats: a prospective study. J. Am. Coll. Cardiol., 1989;13(2): 377–384.

    Article  PubMed  CAS  Google Scholar 

  28. Breithardt, G., M. Borggrefe, and K. Haerten, Role of programmed ventricular stimulation an noninvasive recording of ventricular late potentials for the identification of patients at risk of ventricular tachyarrhythmias after acute myocardial infarction, in Cardiac Electrophysiology and Arrhythmias, D.P. Zipes and J. Jalife, Editors. New York: Grune and Stratton, 1985, pp. 553–561.

    Google Scholar 

  29. Breithardt, G. and M. Borggrefe, Recent advances in the identification of patients at risk of ventricular tachyarrhythmias: role of ventricular late potentials. Circulation, 1987;75(6): 1091–1096.

    Article  PubMed  CAS  Google Scholar 

  30. Cain, M.E., J.L. Anderson, M.F. Arnsdorf, J.W. Mason, M.M. Scheinman, and A.L. Waldo, Signal-averaged electrocardiography. J. Am. Coll. Cardiol., 1996;27(1): 238–249.

    Google Scholar 

  31. Gang, E.S., A.S. Lew, M. Hong, F.Z. Wang, C.A. Siebert, T. Peter, Decreased incidence of ventricular late potentials after successful thrombolytic therapy for acute myocardial infarction. N. Engl. J. Med., 1989;321(11): 712–716.

    Article  PubMed  CAS  Google Scholar 

  32. Eldar, M., J. Leor, H. Hod, Z. Rotstein, S. Truman, E. Kaplinsky, et al., Effect of thrombolysis on the evolution of late potentials within 10 days of infarction. Br. Heart J., 1990;63(5): 272–276.

    Article  Google Scholar 

  33. Chew, E.W., P. Morton, J.G. Murtagh, M.E. Scott, and D.B. O’Keeffe, Intravenous streptokinase for acute myocardial infarction reduces the occurrence of ventricular late potentials. Br. Heart J., 1990;64(1): 5–8.

    Article  PubMed  CAS  Google Scholar 

  34. Turitto, G., A.L. Risa, E. Zanchi, and P.L. Prati, The signal-averaged electrocardiogram and ventricular arrhythmias after thrombolysis for acute myocardial infarction. J. Am. Coll. Cardiol., 1990;15(6): 1270–1276.

    Article  PubMed  CAS  Google Scholar 

  35. Tranchesi, B.J., M. Verstraete, F. van de Werf, C.P. de Albuquerque, B. Caramelli, O.C. Gebara, et al., Usefulness of high-frequency analysis of signal-averaged surface electrocardiograms in acute myocardial infarction before and after coronary thrombolysis for assessing coronary reperfusion. Am. J. Cardiol., 1990;66(17): 1196–1198.

    Article  PubMed  Google Scholar 

  36. Aguirre, F.V., M.J. Kern, J. Hsia, H. Serota, D. Janosik, T. Greenwalt, et al., Importance of myocardial infarct artery patency on the prevalence of ventricular arrhythmias and late potentials after thrombolysis in acute myocardial infarction. Am. J. Cardiol., 1991;68(15): 1410–1416.

    Article  PubMed  CAS  Google Scholar 

  37. Vatterott, P.J., S.C. Hammill, K.R. Bailey, C.M. Wiltgen, and B.J. Gersh, Late potentials on signal-averaged electrocardiograms and patency of the infarct-related artery in survivors of acute myocardial infarction. J. Am. Coll. Cardiol., 1991;17(2): 330–337.

    Article  PubMed  CAS  Google Scholar 

  38. Santarelli, P., G.A. Lanza, F. Biscione, A. Natale, G. Corsini, C. Riccio, et al., Effects of thrombolysis and atenolol or metoprolol on the signal-averaged electrocardiogram after acute myocardial infarction. Late Potentials Italian Study (LAPIS). Am. J. Cardiol., 1993;72(7): 525–531.

    Article  PubMed  CAS  Google Scholar 

  39. Moreno, F.L., L. Karagounis, H. Marshall, R.L. Menlove, S. Ipsen, and J.L. Anderson, Thrombolysis-related early patency reduces ECG late potentials after acute myocardial infarction. Am. Heart J., 1992;124(3): 557–564.

    Article  PubMed  CAS  Google Scholar 

  40. de Chillou, C., N. Sadoul, S. Briancon, and E. Aliot, Factors determining the occurrence of late potentials on the signal-averaged electrocardiogram after a first myocardial infarction: a multivariate analysis. J. Am. Coll. Cardiol., 1991;18(7): 1638–1642.

    Article  PubMed  Google Scholar 

  41. Maki, H., Y. Ozawa, N. Tanigawa, I. Watanabe, R. Kojima, S. Yakubo, et al., Effect of reperfusion by direct percutaneous transluminal coronary angioplasty on ventricular late potentials in cases of total coronary occlusion at initial coronary arteriography. Jpn. Circ. J. 1993;57(3): 183–188.

    Article  PubMed  CAS  Google Scholar 

  42. Kawalsky, D.L., K.N. Garratt, S.C. Hammill, K.R. Bailey, and B.J. Gersh, Effects of infarct-related artery patency and late potentials on late mortality after acute myocardial infarction. Mayo Clin. Proc., 1997;72(5): 414–421.

    Article  PubMed  CAS  Google Scholar 

  43. Savard, P., J.L. Rouleau, J. Ferguson, N. Poitras, P. Morel, R.F. Davies, et al., Risk stratification after myocardial infarction using signal-averaged electrocardiographic criteria adjusted for sex, age, and myocardial infarction location. Circulation, 1997;96(1): 202–213.

    Article  PubMed  CAS  Google Scholar 

  44. Scharf, C., H. Redecker, F. Duru, R. Candinas, H.P. Brunner-La Rocca, A. Gerb, et al., Sudden cardiac death after coronary artery bypass grafting is not predicted by signal-averaged ECG. Ann. Thorac. Surg., 2001;72(5): 1546–1551.

    Article  PubMed  CAS  Google Scholar 

  45. Bauer, A., P. Guzik, P. Barthel, R. Schneider, K. Ulm, M.A. Watanabe, et al., Reduced prognostic power of ventricular late potentials in post-infarction patients of the reperfusion era. Eur. Heart J., 2005;26(8): 755–761.

    Article  PubMed  Google Scholar 

  46. Kuchar, D.L., C.W. Thorburn, and N.L. Sammel, Prediction of serious arrhythmic events after myocardial infarction: Signal-averaged electrocardiogram, Holter monitoring and radionuclide ventriculography. J. Am. Coll. Cardiol., 1987;9(3): 531–538.

    Article  PubMed  CAS  Google Scholar 

  47. Gomes, J.A., S.L. Winters, D. Stewart, S. Horowitz, M. Milner, and P.A. Barreca, New noninvasive index to predict sustained ventricular tachycardia and sudden death in the first year after myocardial infarction: based on signal averaged electrocardiogram, radionuclide ejection fraction and Holter monitoring. J. Am. Coll. Cardiol., 1987;10(2): 349–357.

    Article  PubMed  CAS  Google Scholar 

  48. Kuchar, D.L., C.W. Thorburn, and N.L. Sammel, Signal-averaged electrocardiogram for evaluation of recurrent syncope. Am. J. Cardiol., 1986;58(10): 949–953.

    Article  PubMed  CAS  Google Scholar 

  49. Lacroix, D., M. Dubuc, T. Kus, P. Savard, M. Shenasa, and R. Nadeau, Evaluation of arrhythmic causes of syncope; correlation between Holter monitoring, electrophysiologic testing, and body surface potential mapping. Am. Heart J., 1991;122(5): 1346–1354.

    Article  PubMed  CAS  Google Scholar 

  50. Uther, J.B., C.J. Dennett, and A. Tan, The detection of delayed activation signals of low amplitude in the vectorcardiogram of patients with recurrent ventricular tachycardia by signal averaging, in Management of Ventricular Tachycardia – Role of Mexiletine, E. Sabndoe, D.J. Julian, and J.W. Bell, Editors. Amsterdam: Excerpta Medica, 1978, p. 80.

    Google Scholar 

  51. Breithardt, G., L. Seipel, J. Ostermeyer, U. Karbenn, R.R. Abendorth, M. Borggrefe, et al., Effects of anti-arrhythmic surgery on late ventricular potentials recorded by precordial signal averaging in patients with ventricular tachycardia. Am. Heart J., 1982;104(5 Pt 1): 996–1003.

    Article  PubMed  CAS  Google Scholar 

  52. Marcus, N.H., R.A. Falcone, A.H. Harken, M.E. Josephson, and M.B. Simson, Body surface late potentials: Effects of endocardial resection in patients with ventricular tachycardia. Circulation, 1984;70(4): 632–637.

    Article  PubMed  CAS  Google Scholar 

  53. Denniss, A.R., A.J. Ross, D.A. Richards, D.V. Cody, P.A. Russell, A.A. Young, et al., Effect of anti-arrhythmic therapy on delayed potentials detected by the signal-averaged electrocardiogram in patients with ventricular tachycardia after acute myocardial infarction. Am. J. Cardiol., 1986;58(3): 261–265.

    Article  PubMed  CAS  Google Scholar 

  54. Simson, M.B., E. Kindwall, A.E. Buxton, and M.E. Josephson, Signal averaging of the ECG in the management of patients with ventricular tachycardia: prediction of anti-arrhythmic drug efficacy, in Cardiac Arrhythmias: Where to Go From Here? P. Brugada and H.J. Wellens, Editors. Armonk, NY: Futura, 1987, p. 299.

    Google Scholar 

  55. Hopson, J.R., M.G. Kienzle, A.M. Aschoff, and D.R. Shirkey, Noninvasive prediction of efficacy of type IA anti-arrhythmic drugs by the signal-averaged electrocardiogram in patients with coronary artery disease and sustained ventricular tachycardia. Am. J. Cardiol., 1993;72(3): 288–293.

    Article  PubMed  CAS  Google Scholar 

  56. Kulakowski, P., Y. Bashir, S. Heald, V. Paul, M.H. Anderson, S. Gibson, et al., Effects of procainamide on the signal-averaged electrocardiogram in relation to the results of programmed ventricular stimulation in patients with sustained monomorphic ventricular tacycardia. J. Am. Coll. Cardiol., 1993;21(6): 1428–1439.

    Article  PubMed  CAS  Google Scholar 

  57. Freedman, R.A. and J.S. Steinberg, Electrophysiologic Study Versus Electrocardiographic Monitoring Trial (ESVEM) Investigators. Selective prolongation of QRS late potentials by sodium channel blocking anti-arrhythmic drugs: relation to slowing of ventricular tachycardia. J. Am. Coll. Cardiol., 1991;17(5): 1017–1025.

    Article  PubMed  CAS  Google Scholar 

  58. Greenspon, A.J., G.A. Kidwell, M. DeCaro, and S. Hessen, The effects of type I anti-arrhythmic drugs on the signal-averaged electrocardiogram in patients with malignant ventricular arrhythmias. Pacing Clin. Electrophysiol., 1992;15(10 Pt 1): 1445–1453.

    Article  PubMed  CAS  Google Scholar 

  59. Goedel-Meinen, L., M. Hofmann, G. Schmidt, W. Maier-Rudolph, P. Barthel, A. Schrag, et al., Amiodarone-efficacy and late potentials during long-term therapy. Int. J. Clin. Pharm. Ther. Toxicol., 1990;28(11): 449–454.

    CAS  Google Scholar 

  60. Simson, M.B., H.L. Waxman, R. Falcone, N.H. Marcus, and M.E. Josephson, Effects of anti-arrhythmic drugs on noninvasively recorded late potentials, in New Aspects in the Medical Treatment of Tachyarrhythmias, G. Breithardt and F. Loogen, Editors. Munich: Urban and Schwarzenberg, 1983, pp. 80–86.

    Google Scholar 

  61. Keren, A., A.M. Gillis, R.A. Freedman, J.C. Baldwin, M.E. Billingham, E.B. Stinson, et al., Heart transplant rejection monitored by signal-averaged electrocardiography in patients receiving cyclosporine. Circulation, 1984;70(3 Pt 2): 1124–1129.

    Google Scholar 

  62. Lacroix, D., S. Kacet, P. Savard, F. Molin, J. Dagano, A. Pol, et al., Signal-averaged electrocardiography and detection of heart transplant rejection: comparison of time- and frequency-domain analyses. J. Am. Coll. Cardiol., 1992;19(3): 553–558.

    Article  PubMed  CAS  Google Scholar 

  63. Haberl, R., M. Weber, H. Reichenspurner, B.M. Kemkes, G. Osterholzer, M. Anthuber, et al., Frequency analysis of the surface electrocardiogram for recognition of acute rejection after orthoptic cardiac transplantation in man. Circulation, 1987;76(1): 101–108.

    Article  PubMed  CAS  Google Scholar 

  64. Valentino, V.A., H.O. Ventura, F.M. Abi-Samra, C. van Meter, H.L. Price, The signal-averaged electrocardiogram in cardiac transplantation. Transplantation, 1992;53(1): 124–127.

    Article  PubMed  CAS  Google Scholar 

  65. Poll, D.S., F.E. Marchlinski, R.A. Falcone, M.E. Josephson, and M.B. Simson, Abnormal signal averaged electrocardiograms in patients with nonischemic congestive cardiomyopathy: relationship to sustained ventricular tachyarrhythmias. Circulation, 1985;72(6): 1308–1313.

    Article  PubMed  CAS  Google Scholar 

  66. Mancini, D., K.L. Wong, and M.B. Simson, Prognostic value of an abnormal signal-averaged electrocardiogram in patients with nonischemic congestive cardiomyopathy. Circulation, 1993;87(4): 1083–1092.

    Article  PubMed  CAS  Google Scholar 

  67. Ohnishi, Y., T. Inoue, and H. Fukuzaki, Value of the signal-averaged electrocardiogram as a predictor of sudden death in myocardial infarction and dilated cardiomyopathy. Jpn. Circ. J., 1990;54(2): 127–136.

    Article  PubMed  CAS  Google Scholar 

  68. Middlekauff, H.R., W.G. Stevenson, M.A. Woo, D.K. Moser, and L.W. Stenvenson, Comparison of frequency of late potentials in idiopathic dilated cardiomyopathy and ischemic cardiomyopathy with advanced congestive heart failure and their usefulness in predicting sudden death. Am. J. Cardiol., 1990;66(15): 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  69. Denereaz, D., M. Zimmermann, and R. Ademec, Significance of ventricular late potentials in non-ischemic dilated cardiomyopathy. Eur. Heart J., 1992;13(7): 895–901.

    PubMed  CAS  Google Scholar 

  70. Keeling, P.J., P. Kulakowski, G. Yi, A.K. Slade, S.E. Bent, and W.J. McKenna, Usefulness of signal-averaged electrocardiogram in idiopathic dilated cardiomyopathy for identifying patients with ventricular arrhythmias. Am. J. Cardiol., 1993;72(1):78–84.

    Article  PubMed  CAS  Google Scholar 

  71. Santangeli, P., F. Infusino, G.A. Sgueglia, A. Sestito, and G.A. Lanza, Ventricular late potentials: a critical overview and current applications. J. Electrocardiol., 2008;41: 318–324.

    Article  PubMed  Google Scholar 

  72. Francés, R.J., Arrhythmogenic right ventricular dysplasia/cardiomyopathy. A review and update. Int. J. Cardiol., 2006;110: 279–287.

    Article  PubMed  Google Scholar 

  73. Nava, A., A.F. Folino, B. Bauce, P. Turrini, G.F. Buja, L. Daliento, and G. Thiene, Signal-averaged electrocardiogram with arrhythmogenic right ventricular cardiomyopathy and ventricular arrhythmias. Eur. Heart J., 2000;21: 58–65.

    Article  PubMed  CAS  Google Scholar 

  74. Ikeda, T., H. Sakurada, K. Sakabe, T. Sakata, M. Takami, N. Tezuka, T. Nakae, M. Noro, Y. Enjoji, T. Tejima, K. Sugi, and T. Yamaguchi, Assessment of noninvasive markers in identifying patients at risk in the Brugada syndrome: insight into risk stratification. J. Am. Coll. Cardiol., 2001;37: 1628–1634.

    Article  PubMed  CAS  Google Scholar 

  75. Ikeda, T., M. Takami, K. Sugi, Y. Mizusawa, H. Sakurada, and H. Yoshino, Noninvasive risk stratification of subjects with a Brugada-type electrocardiogram and no history of cardiac arrest. Ann. Noninvasive Electrocardiol., 2005;10: 396–403.

    Article  PubMed  Google Scholar 

  76. Marple, S.J., Digital Spectral Analysis with Applications. New Jersey: Prentice-Hall, 1987.

    Google Scholar 

  77. Pierce, D.L., A.R. Easley, J.R. Windle, and T.R. Engel, Fast Fourier transformation of the entire low amplitude late QRS potential to predict ventricular tachycardia. J. Am. Coll. Cardiol., 1989;14: 1741–1743.

    Article  Google Scholar 

  78. Cain, M.E., H.D. Ambos, F. Witkowski, and B.E. Sobel, Fast-Fourier transform analysis of signal-averaged electrocardiograms for identification of patients prone to sustained ventricular tachycardia. Circulation, 1984;69: 711–720.

    Article  PubMed  CAS  Google Scholar 

  79. Cain, M.E., H.D. Ambos, J. Markham, A.E. Fischer, and B.E. Sobel, Quantification of differences in frequency content of signal-averaged electrocardiograms in patients with compared to those without sustained ventricular tachycardia. Am. J. Cardiol., 1985;55: 1500–1505.

    Article  PubMed  CAS  Google Scholar 

  80. Lindsay, B.D., J. Markham, K.B. Schechtman, H.D. Ambos, and M.E. Cain, Identification of patients with sustained ventricular tachycardia by frequency analysis of signal-averaged electrocardiograms despite the presence of bundle branch block. Circulation, 1988;77: 122–130.

    Article  PubMed  CAS  Google Scholar 

  81. Kelen, G.J., R. Henkin, J. Fontaine, and N. El-Sherif, Effects of analysed signal duration and phase on the results of fast fourier transform analysis of the surface electrocardiogram in subjects with and without late potentials. Am. J. Cardiol., 1987;60: 1282–1289.

    Article  PubMed  CAS  Google Scholar 

  82. Machac, J., A. Weiss, S.L. Winters, P. Barecca, and J.A. Gomes, A comparative study of frequency domain and time domain analysis of signal averaged electrocardiograms in patients with ventricular tachycardia. J. Am. Coll. Cardiol., 1988;11: 284–296.

    Article  PubMed  CAS  Google Scholar 

  83. Machac, J. and J.A. Gomes, Frequency domain analysis, in Signal-Averaged Electrocardiography. Concepts, Methods and Applications, chapter 6, J.A. Gomes, Editor. Boston, MA: Kluwer, 1993, pp. 81–123.

    Google Scholar 

  84. Worley, S.J., D.B. Mark, W.M. Smith, P. Wolf, R.M. Califf, H.C. Strauss, M.G. Manwaring, and R.E. Ideker, Comparison of time domain and frequency domain variables from the signal-averaged electrocardiogram: a multivariable analysis. J. Am. Coll. Cardiol., 1988;11: 1041–1051.

    Article  PubMed  CAS  Google Scholar 

  85. Buckingham, T.A., C.M. Thessen, D. Hertweck, D.L. Janosik, and H.L. Kennedy, Signal-averaged electrocardiography in the time and frequency domains. Am. J. Cardiol., 1989;63: 820–825.

    Article  PubMed  CAS  Google Scholar 

  86. Haberl, R., G. Jilge, R. Pulter, and G. Steinbeck, Comparison of frequency and time domain analysis of the signal-averaged electrocardiogram in patients with ventricular tachycardia and coronary artery disease: methodologic validation and clinical relevance. J. Am. Coll. Cardiol., 1988;12: 150–158.

    Article  PubMed  CAS  Google Scholar 

  87. Haberl, R., G. Jilge, R. Pulter, and G. Steinbeck, Spectral mapping of the electrocardiogram with Fourier transform for identification of patients with sustained ventricular tachycardia and coronary artery disease. Eur. Heart. J., 1989;10: 316–322.

    PubMed  CAS  Google Scholar 

  88. Lander, P., D.E. Albert, and E.J. Berbari, Spectrotemporal analysis of ventricular late potentials. J. Electrocardiol., 1990;23: 95–108.

    Article  PubMed  CAS  Google Scholar 

  89. Malik, M., P. Kulakowski, J. Poloniecki, A. Staunton, O. Odemuyiwa, T. Farrell, and J. Camm, Frequency versus time domain analysis of signal-averaged electrocardiograms. I. Reproducibility of the results. J. Am. Coll. Cardiol., 1992;20: 127–134.

    Article  PubMed  CAS  Google Scholar 

  90. Kelen, G.J., R. Henkin, A.M. Starr, E.B. Caref, D. Bloomfield, and N. El-Sherif, Spectral turbulence analysis of the signal-averaged electrocardiogram and its predictive accuracy for inducible sustained monomorphic ventricular tachycardia. Am. J. Cardiol., 1991;67: 965–975.

    Article  PubMed  CAS  Google Scholar 

  91. Malik, M., P. Kulakowski, K. Hnatkova, A. Staunton, and A.J. Camm, Spectral turbulence analysis versus time-domain analysis of the signal-averaged ECG in survivors of acute myocardial infarction. J. Electrocardiol., 1994;27: S227–S232.

    Article  Google Scholar 

  92. Copie, X., K. Hnatkova, A. Staunton, A.J. Camm, and M. Malik, Spectral turbulence versus time-domain analysis of signal-averaged ECG used for the prediction of different arrhythmic events in survivors of acute myocardial infarction. J. Cardiovasc. Electrophysiol., 1996;7: 583–593.

    Article  PubMed  CAS  Google Scholar 

  93. Englund, A., M. Andersson, and L. Bergfeldt, Spectral turbulence analysis of the signal-averaged electrocardiogram for predicting inducible sustained monomorphic ventricular tachycardia in patients with and without bundle branch block. Eur. Heart J., 1995;16: 1936–1942.

    PubMed  CAS  Google Scholar 

  94. Ahuja, R.K., G. Turitto, B. Ibrahim, E.B. Caref, and N. El-Sherif, Combined time-domain and spectral turbulence analysis of the signal-averaged ECG improves its predictive accuracy in postinfarction patients. J. Electrocardiol., 1994;27: S202–S206.

    Article  Google Scholar 

  95. Mäkijärvi, M., T. Fetsch, L. Reinhardt, A. Martinez-Rubio, M. Shenasa, M. Borggrefe, and G. Breithardt, Comparison and combination of late potentials and spectral turbulence analysis to predict arrhythmic events after myocardial infarction in the Post-Infarction Late Potential (PILP) study. Eur. Heart J. 1995; 16: 651–659.

    PubMed  Google Scholar 

  96. Vazquez, R., E.B. Caref, F. Torres, M. Reina, A. Espina, and N. El-Sherif, Improved diagnostic value of combined time and frequency domain analysis of the signal-averaged electrocardiogram after myocardial infarction. J. Am. Coll. Cardiol., 1999;33: 385–394.

    Article  PubMed  CAS  Google Scholar 

  97. Golden, D.P. Jr., R.A. Wolthuis, and G.W. Hoffler, A spectral analysis of the normal resting electrocardiogram. IEEE Trans. Biomed. Eng., 1973;20: 366–372.

    Article  PubMed  Google Scholar 

  98. Reynolds, E.W., B.F. Muller, G.J. Anderson, and B.T. Muller, High frequency components in the electrocardiogram. A comparative study of normals and patients with myocardial disease. Circulation, 1967;35: 195–206.

    Article  PubMed  Google Scholar 

  99. Flowers, N.C., L.G. Horan, J.R. Thomas, and W.J. Tolleson, The anatomic basis for high-frequency components in the electrocardiogram. Circulation, 1969;39: 531–539.

    Article  PubMed  CAS  Google Scholar 

  100. Mor-Avi, V., S. Abboud, and S. Akselrod, Frequency content of the QRS notching in high-fidelity canine ECG. Comput. Biomed. Res., 1989;22: 18–28.

    Article  PubMed  CAS  Google Scholar 

  101. Abboud, S., Subtle alterations in the high-frequency QRS potentials during myocardial ischemia in dogs. Comput. Biomed. Res., 1987;20: 384–395.

    Article  PubMed  CAS  Google Scholar 

  102. Mor-Avi, V., B. Shargorodsky, S. Abboud, S. Laniado, and S. Akselrod, Effects of coronary occlusion on high-frequency components of the epicardial electrogram and body surface electrocardiogram. Circulation, 1987;76: 237–243.

    Article  PubMed  CAS  Google Scholar 

  103. Abboud, S., R.J. Cohen, A. Selwyn, P. Ganz, D. Sadeh, and P.L. Friedman, Detection of transient myocardial ischemia by computer analysis of standard and signal-averaged high-frequency electrocardiograms in patients undergoing percutaneous transluminal coronary angioplasty. Circulation, 1987;76: 585–596.

    Article  PubMed  CAS  Google Scholar 

  104. Abboud, S., J.M. Smith, B. Shargorodsky, S. Laniado, D. Sadeh, and R.J. Cohen, High frequency electrocardiography of three orthogonal leads in dogs during a coronary artery occlusion. PACE, 1989;12: 574–581.

    Article  PubMed  CAS  Google Scholar 

  105. Abboud, S., R.J. Cohen, and D. Sadeh, A spectral analysis of the high frequency QRS potentials observed during acute myocardial ischemia in dogs. Int. J. Cardiol., 1990;26: 285–290.

    Article  PubMed  CAS  Google Scholar 

  106. Mor-Avi, V. and S. Akselrod, Spectral analysis of canine epicardial electrogram; short term variations in the frequency content induced by myocardial ischemia. Circ. Res., 1990;66: 1681–1691.

    Article  PubMed  CAS  Google Scholar 

  107. Abboud, S., High-frequency electrocardiogram analysis of the entire QRS in the diagnosis and assessment of coronary artery disease. Prog. Cardiovasc. Dis., 1993;35: 311–328.

    Article  PubMed  CAS  Google Scholar 

  108. Pettersson, J., P. Lander, O. Pahlm, L. Sörnmo, S.G. Warren, and G.S. Wagner, Electrocardiographic changes during prolonged coronary artery occlusion in man: comparison of standard and high-frequency recordings. Clin. Physiol., 1998;18: 179–186.

    Article  PubMed  CAS  Google Scholar 

  109. Pettersson, J., O. Pahlm, E. Carro, L. Edenbrandt, M. Ringborn, L. Sörnmo, S.G. Warren, and G.S. Wagner, Changes in high-frequency QRS components are more sensitive than ST segment deviation for detecting acute coronary artery occlusion. J. Am. Coll. Cardiol., 2000;36: 1827–1834.

    Article  PubMed  CAS  Google Scholar 

  110. Goldberger, A.L., V. Bhargava, V. Froelicher, J. Covell, and D. Mortara, Effect of myocardial infarction on the peak amplitude of high frequency QRS potentials. J. Electrocardiol., 1980;13: 367–372.

    Article  PubMed  CAS  Google Scholar 

  111. Bhargava, V. and A. Goldberger, Myocardial infarction diminishes both low and high frequency QRS potentials: power spectrum analysis of lead II. J. Electrocardiol., 1981;14: 57–60.

    Article  PubMed  CAS  Google Scholar 

  112. Goldberger, A.L., V. Bhargava, V. Froelicher, and J. Covell, Effect of myocardial infarction on high-frequency QRS potentials. Circulation, 1981;64: 34–42.

    Article  PubMed  CAS  Google Scholar 

  113. Talwar, K.K., G.S. Rao, U. Nayar, and M.L. Bhatia, Clinical significance of high frequency QRS potentials in myocardial infarction: analysis based on power spectrum of lead III. Cardiovasc. Res., 1989;23: 60–63.

    Article  PubMed  CAS  Google Scholar 

  114. Berkalp, B., E. Baykal, N. Caglar, C. Erol, G. Akgün, and T. Gürel, Analysis of high frequency QRS potentials observed during acute myocardial infarction. Int. J. Cardiol., 1993;42: 147–153.

    Article  PubMed  CAS  Google Scholar 

  115. Novak, P., L. Zhixing, V. Novak, and R. Hatala, Time-frequency mapping of the QRS complex in normal subjects and in postmyocardial infarction patients. J. Electrocardiol., 1994;27: 49–60.

    Article  PubMed  CAS  Google Scholar 

  116. Ringborn, M., O. Pahlm, G.S. Wagner, S.G. Warren, and J. Pettersson, The absence of high-frequency QRS changes in the presence of standard electrocardiographic QRS changes of old myocardial infarction. Am. Heart J., 2001;36: 1827–1834.

    Google Scholar 

  117. Trägårdh, E., O. Pahlm, G.S. Wagner, and J. Pettersson, Reduced high-frequency QRS components in patients with ischemic heart disease compared to normal subjects. J. Electrocardiol., 2004;37: 157–162.

    Article  PubMed  Google Scholar 

  118. Vacek, J.L., D.B. Wilson, G.W. Botteron, and J. Dobbins, Techniques for the determination of left ventricular mass by signal-averaged electrocardiography. Am. Heart J., 1990;120: 958–963.

    Article  PubMed  CAS  Google Scholar 

  119. Okin, P.M., T.M. Donnelly, T.S. Parker, D.C. Wallerson, N.M. Magid, and P. Kligfield, High-frequency analysis of the signal-averaged ECG. Correlation with left ventricular mass in rabbits. J. Electrocardiol., 1992;25: 111–118.

    Article  PubMed  CAS  Google Scholar 

  120. Abboud, S., O. Berenfeld, and D. Sadeh, Simulation of high-resolution QRS complex using a ventricular model with a fractal conduction system. Effects of ischemia on high-frequency QRS potentials. Circ. Res., 1991;68: 1751–1760.

    Article  PubMed  CAS  Google Scholar 

  121. Mason, R.E. and I. Likar, A new system of multiple-lead exercise electrocardiography. Am. Heart J., 1966;71: 196–205.

    Article  PubMed  CAS  Google Scholar 

  122. Proakis, J.G. and D.G. Manolakis, Digital Signal Processing – Principles, Algorithms, and Applications. Upper Saddle River, NJ: Prentice-Hall, 1996.

    Google Scholar 

  123. Schlegel, T.T., W.B. Kulecz, J.L. DePalma, A.H. Feiveson, J.S. Wilson, M.A. Rahman, and M.W. Bungo, Real-time 12-lead high-frequency QRS electrocardiography for enhanced detection of myocardial ischemia and coronary artery disease. Mayo Clin. Proc. 2004;79: 339–350.

    Article  PubMed  Google Scholar 

  124. Schlegel, T.T., B. Arenare, V. Starc, E.C. Greco, G. Poulin, D.R. Moser, and R. Delgado, The best identifiers of cardiomyopathy in short duration ECG recordings: high frequency QRS reduced amplitude zone score, QT interval variability, low frequency RR interval power and heart rate turbulence slope. Folia Cardiol., 2005;12(SupplC): 1–4.

    Google Scholar 

  125. Pueyo, E., E. Sörnmo, and P. Laguna, QRS slopes for early ischemia detection and characterization. IEEE Trans. Biomed. Eng., 2008;55: 468–477.

    Article  PubMed  Google Scholar 

  126. Pettersson, J., E. Carro, L. Edenbrandt, C. Maynard, O. Pahlm, M. Ringborn, L. Sörnmo, S.G. Warren, and G.S. Wagner, Spatial, individual, and temporal variation of the high-frequency QRS amplitude in the 12 standard electrocardiographic leads. Am. Heart J., 2000;139: 352–358.

    PubMed  CAS  Google Scholar 

  127. Abboud, S., J. Leor, and M. Eldar, High frequency ECG during reperfusion therapy of acute myocardial infarction. IEEE Comput. Soc. Comput. Cardiol., 1990; 351–353.

    Google Scholar 

  128. Aversano, T., B. Rudicoff, A. Washington, S. Traill, V. Coombs, and J. Raqueno, High frequency QRS electrocardiography in the detection of reperfusion following thrombolytic therapy. Clin. Cardiol., 1994;17: 175–182.

    Article  PubMed  CAS  Google Scholar 

  129. Bhargava, V. and A.L. Goldberger, Effect of exercise in healthy men on QRS power spectrum. Am. J. Physiol., 1982;243: H964–H969.

    PubMed  CAS  Google Scholar 

  130. Beker, A., A. Pinchas, J. Erel, and S. Abboud, Analysis of high frequency QRS potential during exercise testing in patients with coronary artery disease and in healthy subjects. PACE, 1996;19: 2040–2050.

    Article  PubMed  CAS  Google Scholar 

  131. Lipton, J.A., S.G. Warren, M. Broce, S. Abboud, A. Beker, L. Sörnmo, D.R. Lilly, C. Maynard, B.D. Lucas Jr, and G.S. Wagner, High-frequency QRS electrocardiogram during exercise stress testing for detecting ischemia. Int. J. Cardiol., 2008;124: 198–203.

    Article  PubMed  Google Scholar 

  132. Toledo, E., J.A. Lipton, S.G. Warren, S. Abboud, M. Broce, D.R. Lilly, C. Maynard, B.D. Lucas Jr, and G.S. Wagner, Detection of stress-induced myocardial ischemia from the depolarization phase of the cardiac cycle – a preliminary study. J. Electrocardiol., 2009;42: 240–247.

    Article  PubMed  Google Scholar 

  133. Rahman, M.A., A. Gedevanishvili, Y. Birnbaum, L. Sarmiento, W. Sattam, W.B. Kulecz, and T.T. Schlegel, High-frequency QRS electrocardiogram predicts perfusion defects during myocardial perfusion imaging. J. Electrocardiol., 2006;39: 73–81.

    Article  PubMed  Google Scholar 

  134. Trägårdh, E., T.T. Schlegel, M. Carlsson, J. Petterson, K. Nilsson, and O. Pahlm, High-frequency electrocardiogram analysis in the ability to predict reversible reperfusion defects during adenosine myocardial perfusion imaging. J. Electrocardiol., 2007;40: 510–514.

    Article  PubMed  Google Scholar 

  135. Trägårdh, E., H. Arheden, J. Pettersson, G.S. Wagner, and O. Pahlm, High-frequency QRS components vs left ventricular mass in humans. Folia Cardiol., 2005;12(suppl C): 68.

    Google Scholar 

  136. Watanabe, T., M. Yamaki, H. Tachibana, I. Kubota, and H. Tomoike, Decrease in the high-frequency QRS components depending on the local conduction delay. Jpn. Circ. J., 1998;62: 844–848.

    Article  PubMed  CAS  Google Scholar 

  137. Valentino, V.A., H.O. Ventura, F.M. Abi-Samra, C.H. Van Meter, and H.L. Price, The signal-averaged electrocardiogram in cardiac transplantation. A non-invasive marker of acute allograft rejection. Transplantation, 1992;53: 124–127.

    Article  PubMed  CAS  Google Scholar 

  138. Graceffo, M.A. and R.A. O’Rourke, Cardiac transplant rejection is associated with a decrease in the high-frequency components of the high-resolution, signal-averaged electrocardiogram. Am. Heart J., 1996;132: 820–826.

    Article  PubMed  CAS  Google Scholar 

  139. Matsushita, S., Y. Sakakibara, T. Imazuru, M. Noma, Y. Hiramatsu, O. Shigeta, T. Jikuya, and T. Mitsui, High-frequency QRS potentials as a marker of myocardial dysfunction after cardiac surgery. Ann. Thorac. Surg., 2004;77: 1293–1297.

    Article  PubMed  Google Scholar 

  140. Abe, M., S. Matsushita, and T. Mitsui, Recovery of high-frequency QRS potentials following cardioplegic arrest in pediatric cardiac surgery. Pediatr. Cardiol., 2001;22: 315–320.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

Sörnmo, L., Johansson, E.T., Simson, M.B. (2010). The Signal-Averaged Electrocardiogram. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_39

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics