Skip to main content

25 Intracardiac Mapping

  • Reference work entry
Comprehensive Electrocardiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scherlag, B.J., S.H. Lau, R.H. Helfant, et al., Catheter technique for recording His bundle activity in man. Circulation, 1969;39: 13–18.

    Article  PubMed  CAS  Google Scholar 

  2. Durrer, D., L. Schoo, R.M. Schuilenburg, et al., The role of premature beats in the initiation and the termination of supraventricular tachycardia in the Wolff-Parkinson-White syndrome. Circulation, 1967;36: 644–662.

    Article  PubMed  CAS  Google Scholar 

  3. Wellens, H.J., R.M. Schuilenburg, and D. Durrer, Electrical stimulation of the heart in patients with ventricular tachycardia. Circulation, 1972;46: 216–226.

    Article  PubMed  CAS  Google Scholar 

  4. Josephson, M.E., L.N. Horowitz, and A. Farshidi, Continuous local electrical activity. A mechanism of recurrent ventricular tachycardia. Circulation, 1978;57: 659–665.

    Article  PubMed  CAS  Google Scholar 

  5. Cassidy, D.M., J.A. Vassallo, J.M. Miller, et al., Endocardial catheter mapping in patients in sinus rhythm: Relationship to underlying heart disease and ventricular arrhythmias. Circulation, 1986;73: 645–652.

    Article  PubMed  CAS  Google Scholar 

  6. Cassidy, D.M., J.A. Vassallo, A.E. Buxton et al., Catheter mapping during sinus rhythm: relation of local electrogram duration to ventricular tachycardia cycle length. Am. J. Cardiol., 1985;55: 713–716.

    Article  PubMed  CAS  Google Scholar 

  7. Cassidy, D.M., J.A. Vassallo, A.E. Buxton, et al., The value of catheter mapping during sinus rhythm to localize site of origin of ventricular tachycardia. Circulation, 1984;69: 1103–1110.

    Article  PubMed  CAS  Google Scholar 

  8. Wong, T., W. Hussain, V. Markides, et al., Ablation of difficult right-sided accessory pathways aided by mapping of tricuspid annular activation using a Halo catheter: Halo-mapping of right sided accessory pathways. J. Interv. Card. Electrophysiol., 2006;16: 175–182.

    Article  PubMed  Google Scholar 

  9. Stevenson, W.G., P.T. Sager, P.D. Natterson, et al., Relation of pace mapping QRS configuration and conduction delay to ventricular tachycardia reentry circuits in human infarct scars. J. Am. Coll. Cardiol., 1995;26: 481–488.

    Article  PubMed  CAS  Google Scholar 

  10. Liu, T.Y., C.T. Tai, B.H. Huang, et al., Functional characterization of the crista terminalis in patients with atrial flutter: implications for radiofrequency ablation. J. Am. Coll. Cardiol., 2004;43: 1639–1645.

    Article  PubMed  Google Scholar 

  11. Peters, N.S., J. Coromilas, M.S. Hanna, et al., Characteristics of the temporal and spatial excitable gap in anisotropic reentrant circuits causing sustained ventricular tachycardia. Circ. Res., 1998;82: 279–293.

    Article  PubMed  CAS  Google Scholar 

  12. Almendral, J.M., N.J. Stamato, M.E. Rosenthal, et al., Resetting response patterns during sustained ventricular tachycardia: relationship to the excitable gap. Circulation, 1986;74: 722–730.

    Article  PubMed  CAS  Google Scholar 

  13. Almendral, J.M., M.E. Rosenthal, N.J. Stamato, et al., Analysis of the resetting phenomenon in sustained uniform ventricular tachycardia: incidence and relation to termination. J. Am. Coll. Cardiol., 1986;8: 294–300.

    Article  PubMed  CAS  Google Scholar 

  14. Rosenthal, M.E., N.J. Stamato, J.M. Almendral, et al., Resetting of ventricular tachycardia with electrocardiographic fusion: incidence and significance. Circulation, 1988;77: 581–588.

    Article  PubMed  CAS  Google Scholar 

  15. Almendral, J.M., C.D. Gottlieb, M.E. Rosenthal, et al., Entrainment of ventricular tachycardia: explanation for surface electrocardiographic phenomena by analysis of electrograms recorded within the tachycardia circuit. Circulation, 1988;77: 569–580.

    Article  PubMed  CAS  Google Scholar 

  16. MacLean, W.A., V.J. Plumb, and A.L. Waldo, Transient entrainment and interruption of ventricular tachycardia. Pacing Clin. Electrophysiol., 1981;4: 358–366.

    Article  PubMed  CAS  Google Scholar 

  17. Waldo, A.L., V.J. Plumb, J.G. Arciniegas, et al., Transient entrainment and interruption of the atrioventricular bypass pathway type of paroxysmal atrial tachycardia. A model for understanding and identifying reentrant arrhythmias. Circulation, 1983;67: 73–83.

    Article  PubMed  CAS  Google Scholar 

  18. Waldo, A.L., W.A. MacLean, R.B. Karp, et al., Entrainment and interruption of atrial flutter with atrial pacing: studies in man following open heart surgery. Circulation, 1977;56: 737–745.

    Article  PubMed  CAS  Google Scholar 

  19. Henthorn, R.W., V.J. Plumb, J.G. Arciniegas, et al., Entrainment of “ectopic atrial tachycardia”: evidence for re-entry. Am. J. Cardiol., 1982;49: 920.

    Article  Google Scholar 

  20. Brugada, P., A.L. Waldo, and H.J. Wellens, Transient entrainment and interruption of atrioventricular node tachycardia. J. Am. Coll. Cardiol., 1987;9: 769–775.

    Article  PubMed  CAS  Google Scholar 

  21. Henthorn, R.W., K. Okumura, B. Olshansky, et al., A fourth criterion for transient entrainment: the electrogram equivalent of progressive fusion. Circulation, 1988;77: 1003–1012.

    Article  PubMed  CAS  Google Scholar 

  22. Okumura, K., B. Olshansky, R.W. Henthorn, et al., Demonstration of the presence of slow conduction during sustained ventricular tachycardia in man: use of transient entrainment of the tachycardia. Circulation, 1987;75: 369–378.

    Article  PubMed  CAS  Google Scholar 

  23. Waldo, A.L., R.W. Henthorn, V.J. Plumb, et al., Demonstration of the mechanism of transient entrainment and interruption of ventricular tachycardia with rapid atrial pacing. J. Am. Coll. Cardiol., 1984;3: 422–430.

    Article  PubMed  CAS  Google Scholar 

  24. Waldo, A.L. and R.W. Henthorn, Use of transient entrainment during ventricular tachycardia to localize a critical area in the reentry circuit for ablation. Pacing Clin. Electrophysiol., 1989;12: 231–244.

    Article  PubMed  CAS  Google Scholar 

  25. Portillo, B., J. Mejias, N. Leon-Portillo, et al., Entrainment of atrioventricular nodal reentrant tachycardias during overdrive pacing from high right atrium and coronary sinus. With special reference to atrioventricular dissociation and 2:1 retrograde block during tachycardias. Am. J. Cardiol., 1984;53: 1570–1576.

    Article  PubMed  CAS  Google Scholar 

  26. Okumura, K., R.W. Henthorn, A.E. Epstein, et al., Further observations on transient entrainment: importance of pacing site and properties of the components of the reentry circuit. Circulation, 1985;72: 1293–1307.

    Article  PubMed  CAS  Google Scholar 

  27. Stevenson, W.G., H. Khan, P. Sager, et al., Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation, 1993;88: 1647–1670.

    Article  PubMed  CAS  Google Scholar 

  28. Gepstein, L., G. Hayam, and S.A. Ben Haim, A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation, 1997;95: 1611–1622.

    Article  PubMed  CAS  Google Scholar 

  29. Wittkampf, F.H., E.F. Wever, R. Derksen, et al., LocaLisa: new technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation, 1999;99: 1312–1317.

    Article  PubMed  CAS  Google Scholar 

  30. de Groot, N., M. Bootsma, E.T. van der Velde, et al., Three-dimensional catheter positioning during radiofrequency ablation in patients: first application of a real-time position management system. J. Cardiovasc. Electrophysiol., 2000;11: 1183–1192.

    Article  PubMed  Google Scholar 

  31. Ventura, R., T. Rostock, H.U. Klemm, et al., Catheter ablation of common-type atrial flutter guided by three-dimensional right atrial geometry reconstruction and catheter tracking using cutaneous patches: a randomized prospective study. J. Cardiovasc. Electrophysiol., 2004;15: 1157–1161.

    Article  PubMed  Google Scholar 

  32. Kottkamp, H., G. Hindricks, G. Breithardt, et al., Three-dimensional electromagnetic catheter technology: electroanatomical mapping of the right atrium and ablation of ectopic atrial tachycardia. J. Cardiovasc. Electrophysiol., 1997;8: 1332–1337.

    Article  PubMed  CAS  Google Scholar 

  33. Marchlinski, F., D. Callans, C. Gottlieb, et al., Magnetic electroanatomical mapping for ablation of focal atrial tachycardias. Pacing Clin. Electrophysiol., 1998;21: 1621–1635.

    Article  PubMed  CAS  Google Scholar 

  34. Nakagawa, H. and W.M. Jackman, Use of a three-dimensional, nonfluoroscopic mapping system for catheter ablation of typical atrial flutter. Pacing Clin. Electrophysiol., 1998;21:1279–1286.

    Article  PubMed  CAS  Google Scholar 

  35. Worley, S.J., Use of a real-time three-dimensional magnetic navigation system for radiofrequency ablation of accessory pathways. Pacing Clin. Electrophysiol., 1998;21: 1636–1645.

    Article  PubMed  CAS  Google Scholar 

  36. Soejima, K., M. Suzuki, W.H. Maisel, et al., Catheter ablation in patients with multiple and unstable ventricular tachycardias after myocardial infarction: short ablation lines guided by reentry circuit isthmuses and sinus rhythm mapping. Circulation, 2001;104: 664–669.

    Article  PubMed  CAS  Google Scholar 

  37. Marchlinski, F.E., D.J. Callans, C.D. Gottlieb, et al., Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation, 2000;101: 1288–1296.

    Article  PubMed  CAS  Google Scholar 

  38. Arenal, A., E. Glez-Torrecilla, M. Ortiz, et al., Ablation of electrograms with an isolated, delayed component as treatment of unmappable monomorphic ventricular tachycardias in patients with structural heart disease. J. Am. Coll. Cardiol., 2003;41: 81–92.

    Article  PubMed  Google Scholar 

  39. Brunckhorst, C.B., W.G. Stevenson, K. Soejima, et al., Relationship of slow conduction detected by pace-mapping to ventricular tachycardia re-entry circuit sites after infarction. J. Am. Coll. Cardiol., 2003;41: 802–809.

    Article  PubMed  Google Scholar 

  40. Leonelli, F.M., G. Tomassoni, M. Richey, et al., Usefulness of three-dimensional non-fluoroscopic mapping in the ablation of typical atrial flutter. Ital. Heart J., 2002;3: 360–365.

    PubMed  Google Scholar 

  41. Leonelli, F.M., G. Tomassoni, M. Richey, et al., Ablation of incisional atrial tachycardias using a three-dimensional nonfluoroscopic mapping system. Pacing Clin. Electrophysiol., 2001;24: 1653–1659.

    Article  PubMed  CAS  Google Scholar 

  42. Natale, A., L. Breeding, G. Tomassoni, et al., Ablation of right and left ectopic atrial tachycardias using a three-dimensional nonfluoroscopic mapping system. Am. J. Cardiol., 1998;82: 989–992.

    Article  PubMed  CAS  Google Scholar 

  43. Macle, L., P. Jais, C. Scavee, et al., Pulmonary vein disconnection using the LocaLisa three-dimensional nonfluoroscopic catheter imaging system. J. Cardiovasc. Electrophysiol., 2003;14: 693–697.

    Article  PubMed  Google Scholar 

  44. Schilling, R.J., N.S. Peters, and D.W. Davies, Feasibility of a noncontact catheter for endocardial mapping of human ventricular tachycardia. Circulation, 1999;99: 2543–2552.

    Article  PubMed  CAS  Google Scholar 

  45. Schalij, M.J., F.P. van Rugge, M. Siezenga, et al., Endocardial activation mapping of ventricular tachycardia in patients: first application of a 32-site bipolar mapping electrode catheter. Circulation, 1998;98: 2168–2179.

    Article  PubMed  CAS  Google Scholar 

  46. Aiba, T., W. Shimizu, A. Taguchi, et al., Clinical usefulness of a multielectrode basket catheter for idiopathic ventricular tachycardia originating from right ventricular outflow tract. J. Cardiovasc. Electrophysiol., 2001;12: 511–517.

    Article  PubMed  CAS  Google Scholar 

  47. Eldar, M., D.G. Ohad, A.J. Greenspon, et al., Percutaneous multielectrode endocardial mapping and ablation of ventricular tachycardia in the swine model. Adv. Exp. Med. Biol., 1997;430: 313–321.

    Article  PubMed  CAS  Google Scholar 

  48. Yamane, T., S. Miyanaga, K. Inada, et al., A focal source of atrial fibrillation in the superior vena cava: isolation and elimination by radiofrequency ablation with the guide of basket catheter mapping. J. Interv. Card. Electrophysiol., 2004;11: 131–134.

    Article  PubMed  Google Scholar 

  49. Nishida, K., A. Fujiki, H. Nagasawa, et al., Complex atrial reentrant circuits evaluated by entrainment mapping using a multielectrode basket catheter. Circ. J., 2004;68: 168–171.

    Article  PubMed  Google Scholar 

  50. Zrenner, B., G. Ndrepepa, M.A. Schneider, et al., Mapping and ablation of atrial arrhythmias after surgical correction of congenital heart disease guided by a 64-electrode basket catheter. Am. J. Cardiol., 2001;88: 573–578.

    Article  PubMed  CAS  Google Scholar 

  51. Yoshida, Y., M. Hirai, Y. Murakami, et al., Localization of precise origin of idiopathic ventricular tachycardia from the right ventricular outflow tract by a 12-lead ECG: a study of pace mapping using a multielectrode “basket” catheter. Pacing Clin. Electrophysiol., 1999;22: 1760–1768.

    Article  PubMed  CAS  Google Scholar 

  52. Sigl, R., Introduction to Potential Theory: Fundamental Mathematical and Physical Topics for the Study of Physical Geodesy. Tunbridge Wells: Abacus Press, 1973.

    Google Scholar 

  53. Plonsey, R., An extension of the solid angle potential formulation for an active cell. Biophys. J., 1965;5: 663–667.

    Article  PubMed  CAS  Google Scholar 

  54. Scher, A. and M. Spach, Cardiac depolarization and repolarization and the electrogram, in Handbook of Physiology, R.M. Berne, Editor. Bethesda, MD: American Physiological Society, 1979, p. 37.

    Google Scholar 

  55. Colli-Franzone, P., L. Guerri, C. Viganotti, et al., Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. Circ. Res., 1982;51: 330–346.

    Article  PubMed  CAS  Google Scholar 

  56. Segal, O.R., A.W. Chow, V. Markides, et al., Long-term results after ablation of infarct-related ventricular tachycardia. Heart Rhythm, 2005;2: 474–482.

    Article  PubMed  Google Scholar 

  57. Betts, T.R., P.R. Roberts, S.A. Allen, et al., Radiofrequency ablation of idiopathic left ventricular tachycardia at the site of earliest activation as determined by noncontact mapping. J. Cardiovasc. Electrophysiol., 2000;11: 1094–1101.

    Article  PubMed  CAS  Google Scholar 

  58. Chen, M., B. Yang, J. Zou, et al., Non-contact mapping and linear ablation of the left posterior fascicle during sinus rhythm in the treatment of idiopathic left ventricular tachycardia. Europace, 2005;7: 138–144.

    Article  PubMed  Google Scholar 

  59. Segal, O.R., V. Markides, P. Kanagaratnam, et al., Multiple distinct right atrial endocardial origins in a patient with atrial tachycardia: mapping and ablation using noncontact mapping. Pacing Clin. Electrophysiol., 2004;27: 541–544.

    Article  PubMed  Google Scholar 

  60. Tai, C.T., T.Y. Liu, P.C. Lee, et al., Non-contact mapping to guide radiofrequency ablation of atypical right atrial flutter. J. Am. Coll. Cardiol., 2004;44: 1080–1086.

    Article  PubMed  Google Scholar 

  61. Schneider, M.A., G. Ndrepepa, B. Zrenner, et al., Noncontact mapping-guided catheter ablation of atrial fibrillation associated with left atrial ectopy. J. Cardiovasc. Electrophysiol., 2000;11: 475–479.

    Article  PubMed  CAS  Google Scholar 

  62. Markides, V., R.J. Schilling, A.W.C. Chow, P. Kanagaratnam, D. Lamb, N.S. Peters, and D.W. Davies, Non-contact mapping of the human left atrium to guide ablation of focal atrial fibrillation. Circulation, 2000;102(18 Suppl. II): 575.

    Google Scholar 

  63. Schilling, R.J., A.H. Kadish, N.S. Peters, et al., Endocardial mapping of atrial fibrillation in the human right atrium using a non-contact catheter. Eur. Heart J., 2000;21: 550–564.

    Article  PubMed  CAS  Google Scholar 

  64. Schilling, R.J., N.S. Peters, J. Goldberger, et al., Characterization of the anatomy and conduction velocities of the human right atrial flutter circuit determined by noncontact mapping. J. Am. Coll. Cardiol., 2001;38: 385–393.

    Article  PubMed  CAS  Google Scholar 

  65. Schumacher, B., W. Jung, T. Lewalter, et al., Verification of linear lesions using a noncontact multielectrode array catheter versus conventional contact mapping techniques. J. Cardiovasc. Electrophysiol., 1999;10: 791–798.

    Article  PubMed  CAS  Google Scholar 

  66. Betts, T.R., P.R. Roberts, S.A. Allen, et al., Electrophysiological mapping and ablation of intra-atrial reentry tachycardia after Fontan surgery with the use of a noncontact mapping system. Circulation, 2000;102: 419–425.

    Article  PubMed  CAS  Google Scholar 

  67. Miles, W.M., R. Yee, G.J. Klein, et al., The preexcitation index: an aid in determining the mechanism of supraventricular tachycardia and localizing accessory pathways. Circulation, 1986;74: 493–500.

    Article  PubMed  CAS  Google Scholar 

  68. Michaud, G.F., H. Tada, S. Chough et al., Differentiation of atypical atrioventricular node re-entrant tachycardia from orthodromic reciprocating tachycardia using a septal accessory pathway by the response to ventricular pacing. J. Am. Coll. Cardiol., 2001;38: 1163–1167.

    Article  PubMed  CAS  Google Scholar 

  69. Gonzalez-Torrecilla, E., A. Arenal, F. Atienza, et al., First postpacing interval after tachycardia entrainment with correction for atrioventricular node delay: a simple maneuver for differential diagnosis of atrioventricular nodal reentrant tachycardias versus orthodromic reciprocating tachycardias. Heart Rhythm, 2006;3: 674–679.

    Article  PubMed  Google Scholar 

  70. Haissaguerre, M., F. Gaita, B. Fischer, et al., Elimination of atrioventricular nodal reentrant tachycardia using discrete slow potentials to guide application of radiofrequency energy [see comments]. Circulation, 1992;85: 2162–2175.

    Article  PubMed  CAS  Google Scholar 

  71. Jackman, W.M., K.J. Beckman, J.H. McClelland, et al., Treatment of supraventricular tachycardia due to atrioventricular nodal reentry, by radiofrequency catheter ablation of slow-pathway conduction. N. Engl. J. Med., 1992;327: 313–318.

    Article  PubMed  CAS  Google Scholar 

  72. Jazayeri, M.R., S.L. Hempe, J.S. Sra, et al., Selective transcatheter ablation of the fast and slow pathways using radiofrequency energy in patients with atrioventricular nodal reentrant tachycardia [see comments]. Circulation, 1992;85: 1318–1328.

    Article  PubMed  CAS  Google Scholar 

  73. Wathen, M., A. Natale, K. Wolfe, et al., An anatomically guided approach to atrioventricular node slow pathway ablation. Am. J. Cardiol., 1992;70: 886–889.

    Article  PubMed  CAS  Google Scholar 

  74. Hintringer, F., J. Hartikainen, D.W. Davies, et al., Prediction of atrioventricular block during radiofrequency ablation of the slow pathway of the atrioventricular node. Circulation, 1995;92: 3490–3496.

    Article  PubMed  CAS  Google Scholar 

  75. Jentzer, J.H., R. Goyal, B.D. Williamson, et al., Analysis of junctional ectopy during radiofrequency ablation of the slow pathway in patients with atrioventricular nodal reentrant tachycardia. Circulation, 1994;90: 2820–2826.

    Article  PubMed  CAS  Google Scholar 

  76. Willems, S., H. Shenasa, H. Kottkamp, et al., Temperature-controlled slow pathway ablation for treatment of atrioventricular nodal reentrant tachycardia using a combined anatomical and electrogram guided strategy. Eur. Heart J., 1996;17: 1092–1102.

    Article  PubMed  CAS  Google Scholar 

  77. Poret, P., C. Leclercq, D. Gras, et al., Junctional rhythm during slow pathway radiofrequency ablation in patients with atrioventricular nodal reentrant tachycardia: beat-to-beat analysis and its prognostic value in relation to electrophysiologic and anatomic parameters. J. Cardiovasc. Electrophysiol., 2000;11: 405–412.

    Article  PubMed  CAS  Google Scholar 

  78. Schumacher, B., J. Tebbenjohanns, D. Pfeiffer, et al., Junctional arrhythmias in radiofrequency modification of the atrioventricular node. Z. Kardiol., 1995;84: 977–985.

    PubMed  CAS  Google Scholar 

  79. Lipscomb, K.J., A.M. Zaidi, A.P. Fitzpatrick, et al., Slow pathway modification for atrioventricular node re-entrant tachycardia: fast junctional tachycardia predicts adverse prognosis. Heart, 2001;85: 44–47.

    Article  PubMed  CAS  Google Scholar 

  80. Iturralde, P., V. Araya-Gomez, L. Colin, et al., A new ECG algorithm for the localization of accessory pathways using only the polarity of the QRS complex. J. Electrocardiol., 1996;29:289–299.

    Article  PubMed  CAS  Google Scholar 

  81. d’Avila, A., J. Brugada, V. Skeberis, et al., A fast and reliable algorithm to localize accessory pathways based on the polarity of the QRS complex on the surface ECG during sinus rhythm. Pacing Clin. Electrophysiol., 1995;18: 1615–1627.

    Article  PubMed  Google Scholar 

  82. Xie, B., S.C. Heald, Y. Bashir, et al., Localization of accessory pathways from the 12-lead electrocardiogram using a new algorithm. Am. J. Cardiol., 1994;74: 161–165.

    Article  PubMed  CAS  Google Scholar 

  83. Arruda, M.S., J.H. McClelland, X. Wang, et al., Development and validation of an ECG algorithm for identifying accessory pathway ablation site in Wolff-Parkinson-White syndrome. J. Cardiovasc. Electrophysiol., 1998;9: 2–12.

    Article  PubMed  CAS  Google Scholar 

  84. Chiang, C.E., S.A. Chen, W.S. Teo, et al., An accurate stepwise electrocardiographic algorithm for localization of accessory pathways in patients with Wolff-Parkinson-White syndrome from a comprehensive analysis of delta waves and R/S ratio during sinus rhythm. Am. J. Cardiol., 1995;76: 40–46.

    Article  PubMed  CAS  Google Scholar 

  85. Fitzpatrick, A.P., R.P. Gonzales, M.D. Lesh, et al., New algorithm for the localization of accessory atrioventricular connections using a baseline electrocardiogram [published erratum appears in J. Am. Coll. Cardiol. 1994 Apr;23(5):1272]. J. Am. Coll. Cardiol., 1994;23: 107–116.

    Article  PubMed  CAS  Google Scholar 

  86. Diker, E., M. Ozdemir, U.K. Tezcan, et al., QRS polarity on 12-lead surface ECG. A criterion for the differentiation of right and left posteroseptal accessory atrioventricular pathways. Cardiology, 1997;88: 328–332.

    Article  PubMed  CAS  Google Scholar 

  87. Jackman, W.M., X.Z. Wang, K.J. Friday, et al., Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N. Engl. J. Med., 1991;324: 1605–1611.

    Article  PubMed  CAS  Google Scholar 

  88. Feld, G.K., M. Mollerus, U. Birgersdotter-Green, et al., Conduction velocity in the tricuspid valve-inferior vena cava isthmus is slower in patients with type I atrial flutter compared to those without a history of atrial flutter. J. Cardiovasc. Electrophysiol., 1997;8: 1338–1348.

    Article  PubMed  CAS  Google Scholar 

  89. Nakagawa, H., R. Lazzara, T. Khastgir, et al., Role of the tricuspid annulus and the eustachian valve/ridge on atrial flutter. Relevance to catheter ablation of the septal isthmus and a new technique for rapid identification of ablation success [see comments]. Circulation, 1996;94: 407–424.

    Article  PubMed  CAS  Google Scholar 

  90. Olgin, J.E., J.M. Kalman, L.A. Saxon, et al., Mechanism of initiation of atrial flutter in humans: site of unidirectional block and direction of rotation. J. Am. Coll. Cardiol., 1997;29:376–384.

    Article  PubMed  CAS  Google Scholar 

  91. Saoudi, N., F. Cosio, A. Waldo, et al., A classification of atrial flutter and regular atrial tachycardia according to electrophysiological mechanisms and anatomical bases; a Statement from a Joint Expert Group from The Working Group of Arrhythmias of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J., 2001;22: 1162–1182.

    Article  PubMed  CAS  Google Scholar 

  92. Feld, G.K., R.P. Fleck, P.S. Chen, et al., Radiofrequency catheter ablation for the treatment of human type 1 atrial flutter. Identification of a critical zone in the reentrant circuit by endocardial mapping techniques [see comments]. Circulation, 1992;86: 1233–1240.

    Article  PubMed  CAS  Google Scholar 

  93. Chen, S.A., C.T. Tai, C.E. Chiang, et al., Focal atrial tachycardia: reanalysis of the clinical and electrophysiologic characteristics and prediction of successful radiofrequency ablation. J. Cardiovasc. Electrophysiol., 1998;9: 355–365.

    Article  PubMed  CAS  Google Scholar 

  94. Haissaguerre, M., P. Jais, D.C. Shah, et al., Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med., 1998;339: 659–666.

    Article  PubMed  CAS  Google Scholar 

  95. Pappone, C., S. Rosanio, G. Oreto, et al., Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation. Circulation, 2000;102: 2619–2628.

    Article  PubMed  CAS  Google Scholar 

  96. Cox, J.L., R.B. Schuessler, D.G. Lappas, et al., An 8 1/2-year clinical experience with surgery for atrial fibrillation. Ann. Surg., 1996;224: 267–273.

    Article  PubMed  CAS  Google Scholar 

  97. Nademanee, K., J. McKenzie, E. Kosar, et al., A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol., 2004;43: 2044–2053.

    Article  PubMed  Google Scholar 

  98. Lau, C.P., H.F. Tse, and G.M. Ayers, Defibrillation-guided radiofrequency ablation of atrial fibrillation secondary to an atrial focus. J. Am. Coll. Cardiol., 1999;33: 1217–1226.

    Article  PubMed  CAS  Google Scholar 

  99. Lee, S.H., C.T. Tai, W.S. Lin, et al., Predicting the arrhythmogenic foci of atrial fibrillation before atrial transseptal procedure: implication for catheter ablation [In Process Citation]. J. Cardiovasc. Electrophysiol., 2000;11: 750–757.

    Article  PubMed  CAS  Google Scholar 

  100. Morady, F., L.A. Dicarlo Jr., L.B. Liem, et al., Effects of high stimulation current on the induction of ventricular tachycardia. Am. J. Cardiol., 1985;56: 73–78.

    Article  PubMed  CAS  Google Scholar 

  101. Doherty, J.U., M.G. Kienzle, H.L. Waxman, et al., Programmed ventricular stimulation at a second right ventricular site: an analysis of 100 patients, with special reference to sensitivity, specificity and characteristics of patients with induced ventricular tachycardia. Am. J. Cardiol., 1983;52: 1184–1189.

    Article  PubMed  CAS  Google Scholar 

  102. Herre, J.M., D.E. Mann, J.C. Luck, et al., Effect of increased current, multiple pacing sites and number of extrastimuli on induction of ventricular tachycardia. Am. J. Cardiol., 1986;57: 102–107.

    Article  PubMed  CAS  Google Scholar 

  103. Lerman, B.B., K. Stein, E.D. Engelstein, et al., Mechanism of repetitive monomorphic ventricular tachycardia. Circulation, 1995;92: 421–429.

    Article  PubMed  CAS  Google Scholar 

  104. Lerman, B.B., L. Belardinelli, G.A. West, et al., Adenosine-sensitive ventricular tachycardia: evidence suggesting cyclic AMP-mediated triggered activity. Circulation, 1986;74: 270–280.

    Article  PubMed  CAS  Google Scholar 

  105. Jadonath, R.L., D.S. Schwartzman, M.W. Preminger, et al., Utility of the 12-lead electrocardiogram in localizing the origin of right ventricular outflow tract tachycardia. Am. Heart J., 1995;130: 1107–1113.

    Article  PubMed  CAS  Google Scholar 

  106. Dixit, S., E.P. Gerstenfeld, D.J. Callans, et al., Electrocardiographic patterns of superior right ventricular outflow tract tachycardias: distinguishing septal and free-wall sites of origin. J. Cardiovasc. Electrophysiol., 2003;14: 1–7.

    Article  PubMed  Google Scholar 

  107. Tchou, P., M. Jazayeri, S. Denker, et al., Transcatheter electrical ablation of right bundle branch. A method of treating macroreentrant ventricular tachycardia attributed to bundle branch reentry. Circulation, 1988;78: 246–257.

    Article  PubMed  CAS  Google Scholar 

  108. Kuchar, D.L., J.N. Ruskin, and H. Garan, Electrocardiographic localization of the site of origin of ventricular tachycardia in patients with prior myocardial infarction. J. Am. Coll. Cardiol., 1989;13: 893–903.

    Article  PubMed  CAS  Google Scholar 

  109. Miller, J.M., F.E. Marchlinski, A.E. Buxton, et al., Relationship between the 12-lead electrocardiogram during ventricular tachycardia and endocardial site of origin in patients with coronary artery disease. Circulation, 1988;77: 759–766.

    Article  PubMed  CAS  Google Scholar 

  110. Segal, O.R., A.W. Chow, T. Wong, et al., A novel algorithm for determining endocardial VT exit site from 12 lead surface ECG characteristics in human, infarct-related ventricular tachycardia. J. Cardiovasc. Electrophysiol., 2007;18: 161–168.

    Article  PubMed  Google Scholar 

  111. Callans, D.J., M. Zardini, C.D. Gottlieb, et al., The variable contribution of functional and anatomic barriers in human ventricular tachycardia: an analysis with resetting from two sites. J. Am. Coll. Cardiol., 1996;27: 1106–1111.

    Article  PubMed  CAS  Google Scholar 

  112. Ciaccio, E.J., M.M. Scheinman, V. Fridman, et al., Dynamic changes in electrogram morphology at functional lines of block in reentrant circuits during ventricular tachycardia in the infarcted canine heart: a new method to localize reentrant circuits from electrogram features using adaptive template matching. J. Cardiovasc. Electrophysiol., 1999;10: 194–213.

    Article  PubMed  CAS  Google Scholar 

  113. Morady, F., A. Kadish, S. Rosenheck, et al., Concealed entrainment as a guide for catheter ablation of ventricular tachycardia in patients with prior myocardial infarction. J. Am. Coll. Cardiol., 1991;17: 678–689.

    Article  PubMed  CAS  Google Scholar 

  114. El Shalakany, A., T. Hadjis, P. Papageorgiou, et al., Entrainment/mapping criteria for the prediction of termination of ventricular tachycardia by single radiofrequency lesion in patients with coronary artery disease. Circulation, 1999;99: 2283– 2289.

    Article  PubMed  CAS  Google Scholar 

  115. Strickberger, S.A., B.P. Knight, G.F. Michaud, et al., Mapping and ablation of ventricular tachycardia guided by virtual electrograms using a noncontact, computerized mapping system. J. Am. Coll. Cardiol., 2000;35: 414–421.

    Article  PubMed  CAS  Google Scholar 

  116. Wilber, D.J., D.E. Kopp, D.N. Glascock, et al., Catheter ablation of the mitral isthmus for ventricular tachycardia associated with inferior infarction. Circulation, 1995;92: 3481–3489.

    Article  PubMed  CAS  Google Scholar 

  117. Della, B.P., R. De Ponti, J.A. Uriarte, et al., Catheter ablation and antiarrhythmic drugs for haemodynamically tolerated post-infarction ventricular tachycardia; long-term outcome in relation to acute electrophysiological findings. Eur. Heart J., 2002;23: 414–424.

    Article  Google Scholar 

  118. de Paola, A.A., W.D. Melo, M.Z. Tavora, et al., Angiographic and electrophysiological substrates for ventricular tachycardia mapping through the coronary veins. Heart, 1998;79: 59–63.

    PubMed  Google Scholar 

  119. Wong, T., A.W. Chow, V. Markides, R.J. Schilling, N.S. Peters, and D.W. Davies, Human ventricular tachycardia ablation guided by intracoronary artery guide-wire mapping. Pacing Clin. Electrophysiol., 2002;25: 524.

    Google Scholar 

  120. Sosa, E., M. Scanavacca, A. d’Avila, et al., Endocardial and epicardial ablation guided by nonsurgical transthoracic epicardial mapping to treat recurrent ventricular tachycardia. J. Cardiovasc. Electrophysiol., 1998;9: 229–239.

    Article  PubMed  CAS  Google Scholar 

  121. Cesario, D.A., M. Vaseghi, N.G. Boyle, et al., Value of high-density endocardial and epicardial mapping for catheter ablation of hemodynamically unstable ventricular tachycardia. Heart Rhythm, 2006;3: 1–10.

    Article  PubMed  Google Scholar 

  122. Schweikert, R.A., W.I. Saliba, G. Tomassoni, et al., Percutaneous pericardial instrumentation for endo-epicardial mapping of previously failed ablations. Circulation, 2003;108: 1329–1335.

    Article  PubMed  Google Scholar 

  123. Segal, O.R., A.W. Chow, N.S. Peters and D.W. Davies, Mechanisms that initiate ventricular tachycardia in the infarcted human heart. Heart Rhythm, 2010;7: 57–64.

    Article  PubMed  Google Scholar 

  124. Segal, O.R., A.W. Chow, V. Markides, D.W. Davies and N.S. Peters, Characterisation of the effects of single ventricular extrastimuli on endocardial activation in human, infarct-related ventricular tachycardia. J. Am. Coll. Cardiol., 2007;49: 1315–1323.

    Article  PubMed  Google Scholar 

  125. Segal, O.R., L.J. Gula, A.C. Skanes, A.D. Krahn, R. Yee and G.J. Klein, Differential ventricular entrainment a maneuver to differentiate AV node reentrant tachycardia from orthodromic reciprocating tachycardia. Heart Rhythm, 2009;6: 493–500.

    Article  PubMed  Google Scholar 

  126. Segal, O.R., T. Wong, A.W. Chow, J. Jarman, R.J. Schilling, V. Markides, N.S. Peters and D.W. Davies, Intra-coronary guidewire mapping A novel technique to guide ablation of human ventricular tachycardia. J. Interv. Card. Electrophysiol., 2007;18: 143–154.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

Segal, O.R., Koa-Wing, M., Jarman, J., Peters, N., Markides, V., Davies, D.W. (2010). 25 Intracardiac Mapping. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_25

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics