Skip to main content

The QT Interval

  • Reference work entry
Comprehensive Electrocardiology

1 1 Introduction

The QT interval in an electrocardiogram is a global reflection of complex processes governing the repolarization of ventricular myocardium. Most frequent concerns regarding the QT interval relate to its prolongation whereas QT shortening is relatively rare. QT interval prolongation may result from inherited long QT syndrome (LQTS), but more frequently is observed in the course of ischemic and nonischemic cardiomyopathies, or can be induced by drugs or abnormal electrolyte/metabolic disorders [110]. The LQTS is characterized by prolongation of the QT interval on the electrocardiogram and is associated with an increased propensity to ventricular tachyarrhythmias that can lead to cardiac events such as syncope, cardiac arrest, or sudden death [16]. The LQTS is a pure electrical disorder, which became a paradigm to understand QT interval and repolarization in general, and its role in cardiac electrophysiology. In particular, clinical observations in LQTS patients and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss, A.J., P.J. Schwartz, R.S. Crampton, et al., The long QT syndrome. Prospective longitudinal study of 328 families. Circulation, 1991;84: 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  2. Vincent, G.M., K.W. Timothy, M. Leppert, et al., The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. N. Engl. J. Med., 1992;327: 846–852.

    Article  PubMed  CAS  Google Scholar 

  3. Zareba, W., A.J. Moss, S. le Cessie, et al., Risk of cardiac events in family members of patients with long QT syndrome. J. Am. Coll. Cardiol., 1995;26: 1685–1691.

    Article  PubMed  CAS  Google Scholar 

  4. Zareba, W., A.J. Moss, P.J. Schwartz, et al., Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N. Engl. J. Med., 1998;339: 960–965.

    Article  PubMed  CAS  Google Scholar 

  5. Priori, S.G., P.J. Schwartz, C. Napolitano, et al., Risk stratification in the long-QT syndrome. N. Engl. J. Med., 2003;348: 1866–1874.

    Article  PubMed  Google Scholar 

  6. Zareba, W. and I. Cygankiewicz, Long QT syndrome and short QT syndrome. Prog. Cardiovasc. Dis., 2008;51: 264–278.

    Article  PubMed  Google Scholar 

  7. Schouten, E.G., J.M. Dekker, P. Meppelink, et al., QT interval prolongation predicts cardiovascular mortality in an apparently healthy population. Circulation, 1991;84: 1516–1523.

    Article  PubMed  CAS  Google Scholar 

  8. Sohaib, S.M., O. Papacosta, R.W. Morris, et al., Length of the QT interval: determinants and prognostic implications in a population-based prospective study of older men. J Electrocardiol., 2008;41: 704–710.

    Article  PubMed  Google Scholar 

  9. Piotrowicz, K., W. Zareba, S. McNitt, and A.J. Moss, Repolarization duration in patients with conduction disturbances after myocardial infarction. Am. J. Cardiol., 2007;99: 163–168.

    Article  PubMed  Google Scholar 

  10. Zareba, W., Drug induced QT prolongation. Cardiol. J., 2007;14: 523–533.

    PubMed  Google Scholar 

  11. Splawski, I., J. Shen, K.W. Timothy, et al., Spectrum of mutations in long-QT syndrome genes: KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 2000;102: 1178–1185.

    Article  PubMed  CAS  Google Scholar 

  12. Curran, M.E., I. Splawski, K. Timothy, et al., A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 1995;80: 795–803.

    Article  PubMed  CAS  Google Scholar 

  13. Wang, Q., J. Shen, I. Splawski, et al., SCN5A mutations cause an inherited cardiac arrhythmia, long QT syndrome. Cell, 1995;80:805–811.

    Article  PubMed  CAS  Google Scholar 

  14. Wang, Q., M.E. Curran, I. Splawski, et al., Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet., 1996;12:17–23.

    Article  PubMed  Google Scholar 

  15. Mohler, P.J., J.J. Schott, A.O. Gramolini, et al., Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature, 2003;421:634–639.

    Article  PubMed  CAS  Google Scholar 

  16. Plaster, N.M., R. Tawil, M. Tristani-Firouzi, et al., Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell, 2001;105:511–519.

    Article  PubMed  CAS  Google Scholar 

  17. Splawski, I., K.W. Timothy, L.M. Sharpe, et al., Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 2004;119:19–31.

    Article  PubMed  CAS  Google Scholar 

  18. Medeiros-Domingo, A., T. Kaku, D.J. Tester, et al., SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation, 2007;116: 134–142.

    Article  PubMed  Google Scholar 

  19. Vatta, M., M.J. Ackerman, B. Ye, et al., Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation, 2006;114:2104–2112.

    Article  PubMed  CAS  Google Scholar 

  20. Chen, L., M.L. Marquardt, D.J. Tester, et al., Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc. Nat. Acad. Sci. USA, 2007;104:20990–20995.

    Article  PubMed  CAS  Google Scholar 

  21. Ueda, K., C. Valdivia, A. Medeiros-Domingo, et al., Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc. Natl. Acad. Sci. USA, 2008;105: 9355–9360.

    Article  PubMed  CAS  Google Scholar 

  22. Napolitano, C., S.G. Priori, P.J. Schwartz, et al., Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA, 2005;294: 2975–2980.

    Article  PubMed  CAS  Google Scholar 

  23. Fadi, A.G., G.X. Yan, C. Antzelevitch, and D.S. Rosenbaum, Unique topographical distribution of M cells underlies reentrant mechanism of torsades de pointes in the long-QT syndrome. Circulation, 2002;105: 1247–1253.

    Article  Google Scholar 

  24. Antzelevitch, C., and W. Shimizu, Cellular mechanisms underlying the long QT syndrome. Curr. Opin. Cardiol., 2002;17: 43–51.

    Article  PubMed  Google Scholar 

  25. Antzelevitch, C. Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm, 2005;2: S9–S15.

    Article  PubMed  Google Scholar 

  26. Antzelevitch, C., L. Belardinelli, A.C. Zygmunt, et al., Electrophysiologic effects of ranolazine: a novel anti-anginal agent with antiarrhythmic properties. Circulation, 2004;110: 904–910.

    Article  PubMed  CAS  Google Scholar 

  27. Moss, A.J. and R.S. Kass, Long QT syndrome: from channels to cardiac arrhythmias. J. Clin. Invest., 2005;115: 2018–2024.

    Article  PubMed  CAS  Google Scholar 

  28. Keating, M.T. and M.C. Sanguinetti, Molecular and cellular mechanisms of cardiac arrhythmias. Cell, 2001;104: 569–580.

    Article  PubMed  CAS  Google Scholar 

  29. Sanguinetti, M.C., C. Jiang, M.E. Curran, and M.T. Keating, A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell, 1995;81: 299–307.

    Article  PubMed  CAS  Google Scholar 

  30. Roden, D.M., R.L. Woosley, and R.K. Primm, Incidence and clinical features of the quinidine-associated long QT syndrome: implications for patient care. Am. Heart. J., 1986;111: 1088–1093.

    Article  PubMed  CAS  Google Scholar 

  31. Kay, G.N., V.J. Plumb, J.G. Arciniegas, et al., Torsades de pointes: the long-short initiating sequence and other clinical features: observations in 32 patients. J. Am. Coll. Cardiol., 1983;2: 806–817.

    Article  PubMed  CAS  Google Scholar 

  32. Makkar, R.R., B.S. Fromm, R.T. Steinman, et al., Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA, 1993;270: 2590–2597.

    Article  PubMed  CAS  Google Scholar 

  33. Moss, A, Measurement of the QT interval and the risk associated with QTc interval prolongation: a review. Am. J. Cardiol., 1993;72: 23B–25B.

    Article  PubMed  CAS  Google Scholar 

  34. Goldenberg, I, A.J. Moss, and W. Zareba, QT interval: how to measure it and what is “normal”. J. Cardiovasc. Electrophysiol., 2006;17: 333–336.

    Article  PubMed  Google Scholar 

  35. Lepeschkin, E., The U wave of the electrocardiogram. Mod. Concepts Cardiovasc. Dis., 1969;38: 39–45.

    PubMed  CAS  Google Scholar 

  36. Pérez Riera, A.R., C. Ferreira, C.F. Filho, et al., The enigmatic sixth wave of the electrocardiogram: the U wave. Cardiol. J., 2008;15: 408–421.

    PubMed  Google Scholar 

  37. Viskin, S., U. Rosovski, A.J. Sands, et al., Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one. Heart Rhythm, 2005;2: 569–574.

    Article  PubMed  Google Scholar 

  38. Kligfield, P., L.S. Gettes, J.J. Bailey, et al., Recommendations for the standardization and interpretation of the electrocardiogram: part I: the electrocardiogram and its technology a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol., 2007;49: 1109–1127.

    Article  PubMed  Google Scholar 

  39. Zareba, W., A.J. Moss, S. le Cessie, Dispersion of ventricular repolarization and arrhythmic cardiac death in coronary artery disease. Am. J. Cardiol., 1994;74: 550–553.

    Article  PubMed  CAS  Google Scholar 

  40. Zareba, W., Dispersion of repolarization: time to move beyond QT dispersion. Annals of Noninvasive Electrocardiol., 2000;5: 373–381.

    Article  Google Scholar 

  41. Priori, S.G., D.W. Mortara, C. Napolitano, et al., Evaluation of the spatial aspects of T-wave complexity in the long-QT syndrome. Circulation, 1997;96: 3006–3012.

    Article  PubMed  CAS  Google Scholar 

  42. Zareba, W., A.J. Moss, and J. Konecki. TU wave area-derived measures of repolarization dispersion in the long QT syndrome. J. Electrocardiol., 1998;30(Suppl.): 191–195.

    Article  PubMed  Google Scholar 

  43. Okin, P.M., R.B. Devereux, R.R. Fabsitz, et al., Principal component analysis of the T wave and prediction of cardiovascular mortality in American Indians: the Strong Heart Study. Circulation, 2002;105: 714–719.

    Article  PubMed  Google Scholar 

  44. Couderc, J.P., S. McNitt, J. Xia, et al., Repolarization morphology in adult LQT2 carriers with borderline prolonged QTc interval. Heart Rhythm, 2006;3: 1460–1466.

    Article  PubMed  Google Scholar 

  45. Bazett, H.C., An analysis of time relations of electrocardiograms. Heart, 1920;7: 353–367.

    Google Scholar 

  46. Fridericia, L.S., Duration of systole in electrocardiogram. Acta. Med. Scandinav., 1920;53: 469–475.

    Article  Google Scholar 

  47. Sagie, A., M.G. Larson, R.J. Goldberg, et al., An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am. J. Cardiol., 1992;70: 797–801.

    Article  PubMed  CAS  Google Scholar 

  48. Hodges, M., D. Salerno, and D. Erlien, Bazett’s QT correction reviewed: evidence that a linear QT correction for heart rate is better. J. Am. Coll. Cardiol., 1983;1: 694.

    Google Scholar 

  49. Rautaharju, P.M., S.H. Zhou, S.Wong, et al., Sex differences in the evolution of electrocardiographic QT interval with age. Can. J. Cardiol., 1992;8: 690–695.

    PubMed  CAS  Google Scholar 

  50. Karjalainen, J., M. Viitasalo, M. Manttari, et al., Relation between QT intervals and heart rates from 40-to 120 beats/min in rest electrocardiogram of men and a simple method to adjust QT interval values. J. Am. Coll. Cardiol., 1994;23: 1547–1553.

    Article  PubMed  CAS  Google Scholar 

  51. Batchvarov, V.N., A. Ghuran, P. Smetana, et al., QT-RR relationship in healthy subjects exhibits substantial intersubject variability and high intrasubject stability. Am. J. Physiol. Heart Circ. Physiol., 2002;282: H2356–H2363.

    PubMed  CAS  Google Scholar 

  52. Malik, M., K. Hnatkova, and V. Batchvarov, Differences between study-specific and subject-specific heart rate corrections of the QT interval in investigations of drug induced QTc prolongation. Pacing Clin. Electrophysiol., 2004;27: 791–800.

    Article  PubMed  Google Scholar 

  53. Extramiana, F., P. Maison-Blanche, A. Haggui, et al. Control of rapid heart rate changes for electrocardiographic analysis: implications for thorough QT studies. Clin. Cardiol., 2006;29: 534–539.

    Article  PubMed  Google Scholar 

  54. Moss, A.J. and J. Robinson. Clinical features of the idiopathic long QT syndrome. Circulation, 1992;85(Suppl. 1): I140–I144.

    PubMed  CAS  Google Scholar 

  55. Lehmann, M.H. and H.Yang, Sexual dimorphism in the electrocardiographic dynamics of human ventricular repolarization: characterization in true time domain. Circulation, 2001;104: 32–38.

    Article  PubMed  CAS  Google Scholar 

  56. Sauer, A.J., A.J. Moss, S. McNitt, et al., Long QT syndrome in adults. J. Am. Coll. Cardiol., 2007;49: 329–337.

    Article  PubMed  Google Scholar 

  57. Fenichel, R.R., M. Malik, C. Antzelevitch, et al., Drug-induced Torsade de Pointes and implications for drug development. J. Cardiovasc. Electrophysiol., 2004;15: 475–495.

    Article  PubMed  Google Scholar 

  58. Straus, S.M., J.A. Kors, M.L. De Bruin, et al., Prolonged QTc interval and risk of sudden cardiac death in a population of older adults. J. Am. Coll. Cardiol., 2006;47: 362–367.

    Article  PubMed  Google Scholar 

  59. Goldberg, R.J., J. Bengtson, Z.Y. Chen, et al., Duration of the QT interval and total and cardiovascular mortality in healthy persons (the Framingham Heart Study experience). Am. J. Cardiol., 1991;67: 55–58.

    Article  PubMed  CAS  Google Scholar 

  60. Robbins, J., J.C. Nelson, P.M. Rautaharju, and J.S. Gottdiener, The association between the length of the QT interval and mortality in the cardiovascular health study. Am. J. Med., 2003;115: 689–694.

    Article  PubMed  Google Scholar 

  61. Okin, P.M., R.B. Devereux, B.V. Howard, et al., Assessment of QT interval and QT dispersion for prediction of all-cause and cardiovascular mortality in American Indians: the Strong Heart Study. Circulation, 2000;101: 61–66.

    Article  PubMed  CAS  Google Scholar 

  62. Algra, A., J.G. Tijssen, J.R. Roelandt, et al., QTc prolongation measured by standard 12-lead electrocardiography is an independent risk factor for sudden death due to cardiac arrest. Circulation, 1991;83: 1888–1894.

    Article  PubMed  CAS  Google Scholar 

  63. Attar, M.N., K. Wong, D.G. Groves, et al., Clinical implications of QRS duration and QT peak prolongation in patients with suspected coronary disease referred for elective cardiac catheterization. Ann. Noninvasive Electrocardiol., 2008;13: 106–112.

    Article  PubMed  Google Scholar 

  64. Davey, P., QT interval and mortality from coronary artery disease. Prog. Cardiovasc. Dis., 2000;42: 359–384.

    Article  PubMed  CAS  Google Scholar 

  65. Davey, P., QT interval lengthening in cardiac disease relates more to left ventricular systolic dysfunction than to autonomic function. Eur. J. Heart Fail., 2000;2: 265–271.

    Article  PubMed  CAS  Google Scholar 

  66. Montanez, A., J.N. Ruskin, P.R. Hebert, et al., Prolonged QTc interval and risks of total and cardiovascular mortality and sudden death in the general population: a review and qualitative overview of the prospective cohort studies. Arch. Intern. Med., 2004;164: 943–948.

    Article  PubMed  Google Scholar 

  67. Breidthardt, T., M. Christ, M. Matti, et al., QRS and QTc interval prolongation in the prediction of long-term mortality of patients with acute destabilised heart failure. Heart, 2007;93: 1093–1097.

    Article  PubMed  CAS  Google Scholar 

  68. Zareba, K.M., H.J. Shenkman, and J.D. Bisognano, Predictive value of admission electrocardiography in patients with heart failure. Congest. Heart Fail., 2008;14: 173–179.

    Article  PubMed  Google Scholar 

  69. Moss, A.J., W. Zareba, J. Benhorin, et al., ECG T-wave patterns in genetically distinct forms of the hereditary long QT syndrome. Circulation, 1995;92: 2929–2934.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang, L., K.W. Timothy, G.M. Vincent, et al., Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation, 2000;102: 2849–2855.

    Article  PubMed  CAS  Google Scholar 

  71. Yan, G.X. and Antzelevitch C., Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation, 1998;98: 1928–1936.

    Article  PubMed  CAS  Google Scholar 

  72. Emori, T. and C. Antzelevitch Cellular basis for complex T waves and arrhythmic activity following combined IKr and IKs block. J. Cardiovasc. Electrophysiol., 2001;12: 1369–1378.

    Article  PubMed  CAS  Google Scholar 

  73. The CAST Investigators. Increased mortality due to encainide or flecainide in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J. Med., 1989;321: 406–412.

    Article  Google Scholar 

  74. Woosley, R.L., Y. Chen, J.P. Freiman, and R.A. Gillis. Mechanism of the cardiotoxic actions of terfenadine. JAMA, 1993;269: 1532–1536.

    Article  PubMed  CAS  Google Scholar 

  75. Glasman, A.H. and T.J. Biggert. Antipsychotic drugs: prolonged QTc interval, torsade de point sudden death. Am. J. Psychiatry, 2001;158(1): 774–782.

    Article  Google Scholar 

  76. Liu, T, B.S. Brown, Y. Wu, et al., Blinded validation of the isolated arterially perfused rabbit ventricular wedge in preclinical assessment of drug-induced proarrhythmias. Heart Rhythm, 2006;3: 948–956.

    Article  PubMed  Google Scholar 

  77. Makkar, R.R., B.S. Fromm, R.T. Steinman, et al., Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA, 1993;270: 2590–2597.

    Article  PubMed  CAS  Google Scholar 

  78. Roden, D.M. and P.C. Viswanathan. Genetics of acquired long QT syndrome. J. Clin. Invest., 2005;115: 2025–2032.

    Article  PubMed  CAS  Google Scholar 

  79. Haverkamp, W., G. Breithardt, A.J. Camm, et al., The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications: report on a policy conference of the European Society of Cardiology. Eur. Heart J., 2000;21: 1216–1231.

    Article  PubMed  CAS  Google Scholar 

  80. International Conference on Harmonisation; guidance on E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs; availability. Fed. Regist., 2005;70: 61134–61135.

    Google Scholar 

  81. Zareba, W. and A. Bayes de Luna, QT dynamics and variability. Ann. Noninvasive Electrocardiol., 2005;10: 256–262.

    Article  PubMed  Google Scholar 

  82. Franz, M.R., C.D. Swerdlow, L.B. Liem, et al., Cycle length dependence of human action potential in vivo. Effects of single extrastimuli, sudden sustained rate acceleration and deceleration, and different steady-state frequencies. J. Clin. Invest. 1988;82: 972–979.

    Article  PubMed  CAS  Google Scholar 

  83. Lau, C.P., A.R. Freedman, S. Fleming et al., Hysteresis of the ventricular paced QT interval in response to abrupt changes in pacing rate. Cardiovasc. Res., 1988;22: 67–72.

    Article  PubMed  CAS  Google Scholar 

  84. Krahn, A.D., G.J. Klein, and R.Yee, Hysteresis of the RT interval with exercise. A new marker for the long QT syndrome? Circulation, 1997;96: 1551–1556.

    Article  Google Scholar 

  85. Merri, M., M. Alberti, and A.J. Moss, Dynamic analysis of ventricular repolarization duration from 24 hour Holter recordings. IEEE Trans. Biomed. Eng., 1993;40: 1219–1225.

    Article  PubMed  CAS  Google Scholar 

  86. Homs, E., V. Marti, J. Offndo, et al., Automatic measurement of corrected QT interval in Holter recordings: comparison of its dynamic behavior in patients after myocardial infarction with and without life-threatening arrhythmias. Am. Heart. J., 1997;134(2 Pt 1): 181–187.

    Article  PubMed  CAS  Google Scholar 

  87. Jensen, B.T., C.E. Larroude, L.P. Rasmussen, et al., Beat-to-beat QT dynamics in healthy subjects. Ann. Noninvasive Electrocardiol., 2004;9: 3–11.

    Article  PubMed  Google Scholar 

  88. Badilini, F., P. Maison-Blanche, R. Childers et al., QT interval analysis on ambulatory electrocardiogram recordings. A selective beat averaging approach. Med. Biol. Eng. Comput., 1999;37: 71–79.

    Article  PubMed  CAS  Google Scholar 

  89. Extramiana, F., P. Maison-Blanche, F. Badilini et al., Circadian modulation of QT-rate dependence in healthy volunteers: gender and age differences. J. Electrocardiol., 1999;32: 33–43.

    Article  PubMed  CAS  Google Scholar 

  90. Iacoviello, M., C. Forleo, P. Guida, et al., Ventricular repolarization dynamicity provides independent prognostic information toward major arrhythmic events in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol., 2007;50: 225–231.

    Article  PubMed  Google Scholar 

  91. Jensen, B.T., S.Z. Abildstrom, C.E. Larroude, et al., QT dynamics in risk stratification after myocardial infarction. Heart Rhythm, 2005;2: 357–364.

    Article  PubMed  Google Scholar 

  92. Stramba-Badiale, M., E. Locati, A. Martinelli, et al., Gender and the relationship between ventricular repolarization and cardiac cycle length during 24-hour Holter recordings. Eur. Heart. J., 1997;18: 1000–1006.

    Article  PubMed  CAS  Google Scholar 

  93. Sredniawa, B., A. Musialik-Lydka, P. Jarski, et al., Circadian and sex-dependent QT dynamics. Pacing Clin. Electrophysiol., 2005;28(Suppl. 1): S211–S216.

    Article  PubMed  Google Scholar 

  94. Nakagawa, M., T. Ooie, N. Takahashi, et al., Influence of menstrual cycle on QT dynamics. Pacing Clin. Electrophysiol., 2006;29: 607–613.

    Article  PubMed  Google Scholar 

  95. Vrtovec, B., V. Starc, and H. Meden-Vrtovec, The effect of estrogen replacement therapy on ventricular repolarization dynamics in healthy postmenopausal women. J. Electrocardiol., 2001;34: 227–283.

    Article  Google Scholar 

  96. Merri, M., A.J. Moss, J. Benhorin, et al., Relation between ventricular repolarization duration and cardiac cycle length during 24 hour Holter recordings. Findings in normal patients and patients with long QT syndrome. Circulation, 1992;85: 1816–1821.

    Article  PubMed  CAS  Google Scholar 

  97. Perkiomaki, J.S., W. Zareba, A. Nomura, et al., Repolarization dynamics in patients with long QT syndrome. J. Cardiovasc. Electrophysiol., 2002;13: 651–656.

    Article  PubMed  Google Scholar 

  98. Extramiana, F., N. Neyroud, H. Huikuri, et al., QT interval and arrhythmic assessment after myocardial infarction. Am. J. Cardiol., 1999;83: 266–269.

    Article  PubMed  CAS  Google Scholar 

  99. Savelieva, I., Y.G. Yap, G.Yi, et al., Relation of ventricular repolarization to cardiac cycle length in normal subjects, hypertrophic cardiomyopathy and patients with myocardial infarction. Clin. Cardiol., 1999;22: 649–654.

    Article  PubMed  CAS  Google Scholar 

  100. Faber, T.S., A. Grom, M. Schopflin, et al., Beat-to-beat assessment of QT/RR ratio in severe heart failure and overt myocardia ischemia: a measure of electrical integrity in diseased hearts. Pacing Clin. Electrophysiol., 2003;26: 836–842.

    Article  PubMed  Google Scholar 

  101. Roche, F., J.M. Gaspoz, I. Court-Fortune, et al., Alteration of QT rate dependence reflects cardiac autonomic imbalance in patients with obstructive sleep apnea syndrome. Pacing Clin. Electrophysiol., 2003;26: 1446–1453.

    Article  PubMed  Google Scholar 

  102. Pellerin, D., P. Maison Blanche, F. Extramiana, et al., Autonomic influences on ventricular repolarization in congestive heart failure. J. Electrocadiol., 2001;34: 35–40.

    Article  Google Scholar 

  103. Lang, C.C., J.M. Neilson, and A.D. Flapan. Abnormalities of the repolarization characteristics of patients with heart failure progress with symptom severity. Ann. Noninvasive Electrocardiol., 2004;9: 257–264.

    Article  PubMed  Google Scholar 

  104. Digeos-Hasnier, S., X. Copie, O. Paziaud, et al., Abnormalities of ventricular repolarization in mitral valve prolapse. Ann. Noninvasive Electrocardiol., 2005;10: 297–304.

    Article  PubMed  Google Scholar 

  105. Bonnemeier, H., J. Ortak, F. Bode, et al., Modulation of ventricular repolarization in patients with transient left ventricular apical ballooning: a case control study. J. Cardiovasc. Electrophysiol., 2006;17: 1340–1347.

    Article  PubMed  Google Scholar 

  106. Lieb, W., C. Voss, J. Ortak, et al., Impact of diabetes on QT dynamicity in patients with and without myocardial infarction: the KORA Family Heart Study. Pacing Clin. Electrophysiol., 2007;30: S183–S187.

    Article  PubMed  Google Scholar 

  107. Valensi, P.E., N.B. Johnson, P. Maison-Blanche, et al., Influence of autonomic neuropathy on heart rate dependence of ventricular repolarization in diabetic patients. Diabetes Care, 2002;25: 918–923.

    Article  PubMed  Google Scholar 

  108. Nakagawa, M., T. Iwao, S. Ishida, et al., Dynamics of QT interval in a patient with long QT syndrome and a normal QT interval. Jpn. Circ. J., 1998;62: 215–218.

    Article  PubMed  CAS  Google Scholar 

  109. Fujiki, A., M. Suago, K. Nishida, et al., Repolarization abnormality in idiopathic ventricular fibrillation: assessment using 24-hour QT-RR and QTa-RR relationship. J. Cardiovasc. Electrophysiol. 2004;15: 59–63.

    Article  PubMed  Google Scholar 

  110. Tavernier, R., L. Jordaens, F. Haerynck, et al., Changes in the QT interval and its adaptation to rate, assessed with continuous electrocardiographic recordings in patients with ventricular fibrillation, as compared to normal individuals without arrhythmias. Eur. Heart J., 1997;18: 994–999.

    Article  PubMed  CAS  Google Scholar 

  111. Pierre, B., D. Babuty, P. Paret, et al., Abnormal nocturnal heart rate variability and QT dynamics in patients with Brugada syndrome. Pacing Clin. Electrophysiol., 2007; 30(Suppl. 1): 188–191.

    Google Scholar 

  112. Yavuz, B., A. Deniz, G. Abali, et al., Impaired ventricular electrical stability and sympathetic hyperactivity in patients with multivessel coronary artery disease. Coron. Artery Dis., 2007;18: 241–245.

    Article  PubMed  Google Scholar 

  113. Bonnemeier, H., U.K.W. Wiegand, F. Bode, et al., Impact of infarct-related artery flow on QT dynamicity in patients undergoing direct percutaneous coronary intervention for acute myocardial infarction. Circulation, 2003;108: 2979–2986.

    Article  PubMed  Google Scholar 

  114. Singh, J.P., P. Sleight, A. Kardos, and G. Hart, QT interval dynamics and heart rate variability preceding a case of cardiac arrest. Heart, 1997;77: 375–377.

    PubMed  CAS  Google Scholar 

  115. Sredniawa, B., P. Jarski, A. Musialik-Lydka, et al., QT dynam- ics and the risk of sudden arrhythmic cardiac death In ischemic heart disease. Pacing Clin. Electrophysiol., 2004;27 (Pt 1): 827–828.

    Article  PubMed  Google Scholar 

  116. Chevalier, P., H. Burri, P. Adeleine, et al., QT dynamicity and sudden death after myocardial infarction: results of long term follow up study. J. Cardiovasc. Electrophysiol., 2002;14: 227–233.

    Article  Google Scholar 

  117. Milliez, P., A. Leenhardt, P. Maison Blanche, et al., Usefulness of ventricular repolarization dynamicity in patients with ischemic cardiomyopathy (from the European Myocardial Infarct Amiodarone Trial). Am. J. Cardiol., 2005;95: 821–826.

    Article  PubMed  Google Scholar 

  118. Smetana, P., E. Pueyo, K. Hnatkowa, et al., Individual pattern of dynamic QT/RR relationship in survivors of acute myocardial infarction and their relationship to antiarrhythmic efficacy of amiodarone. J. Cardiovasc. Electrophysiol., 2004;15: 1147–1154.

    Article  PubMed  Google Scholar 

  119. Pathak, A., D. Curnier, J. Fourcade, et al., QT dynamicity: a prognostic factor for sudden death in chronic heart failure. Eur. J. Heart Fail., 2005;7: 269–275.

    Article  PubMed  Google Scholar 

  120. Watanabe, E., T. Arakawa, T. Uchiyama, et al., Prognostic significance of circadian variability of RR and QT intervals and QT dynamicity in patients with chronic heart failure. Heart Rhythm, 2007;4: 999–1005.

    Article  PubMed  Google Scholar 

  121. Cygankiewicz, I., W. Zareba, R. Vazquez, et al., Prognostic value of QT/RR slope in predicting mortality in patients with congestive heart failure. J. Cardiovasc. Electrophysiol., 2008;19: 1066–1072.

    Article  PubMed  Google Scholar 

  122. Zareba, W., QT-RR slope: dynamics of repolarization in the risk stratification. J. Cardiovasc. Electrophysiol., 2003;14: 234–235.

    Article  PubMed  Google Scholar 

  123. Berger, R.D., E.K. Kasper, K.L. Baughman, et al., Beat-to-beat QT interval variability. Novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation, 1997;96: 1557–1565.

    Article  Google Scholar 

  124. Zareba, W., F. Badilini, and A.J. Moss, Automatic detection of spatial and dynamic heterogeneity of repolarization. J. Electrocardiol., 1994;27(Suppl.): 66–72.

    Article  PubMed  Google Scholar 

  125. Couderc, J.P., W. Zareba, L. Burattini, and A.J. Moss, Beat-to-beat repolarization variability in LQTS patients with SCN5A sodium channel gene mutation. Pacing Clin. Electrophysiol., 1999;22: 1581–1592.

    Article  PubMed  CAS  Google Scholar 

  126. Couderc, J.P., W. Zareba, S. McNitt, et al., Repolarization variability in the risk stratification of MADIT II patients. Europace, 2007;9: 717–723.

    Article  PubMed  Google Scholar 

  127. Goldenberg, I., J. Mathew, A.J. Moss, et al., Corrected QT variability in serial electrocardiograms in long QT syndrome: the importance of the maximum corrected QT for risk stratification. J. Am. Coll. Cardiol., 2006;48: 1047–1052.

    Article  PubMed  Google Scholar 

  128. Vrtovec, B., V. Starc, and R. Starc, Beat-to-beat QT interval variability in coronary patients. J. Electrocardiol., 2000;33: 119–25.

    Article  PubMed  CAS  Google Scholar 

  129. Cuomo, S., F. Marciano, M.L. Migaux, et al., Abnormal QT interval variability in patients with hypertrophic cardiomyopathy: can syncope be predicted? J. Electrocardiol., 2004;37: 113–119.

    Article  PubMed  Google Scholar 

  130. Hiromoto, K., H. Shimizu, T. Mine, et al., Correlation between beat-to-beat QT interval variability and impaired left ventricular function in patients with previous myocardial infarction. Ann. Noninvasive Electrocardiol., 2006;11: 299–305.

    Article  PubMed  Google Scholar 

  131. Desai, N., D.S. Raghunandan, M. Mallavarapu, et al., Beat-to-beat heart rate and QT variability in patients with congestive cardiac failure: blunted response to orthostatic challenge. Ann. Noninvasive Electrocardiol. 2004;9: 323–329.

    Article  PubMed  Google Scholar 

  132. Yeragani, V.K., M. Tancer, and T. Uhde, Heart rate and QT interval variability: abnormal alpha-2 adrenergic function in patients with panic disorder. Psychiatry, 2003;121: 185–196.

    CAS  Google Scholar 

  133. Carney, R.M., K.F. Freedland, P. Stein, et al., Effects of depression on QT interval variability after myocardial infarction. Psychosomatic Medicine, 2003;65: 177–180.

    Article  PubMed  Google Scholar 

  134. Haigney, M.C., S. Alam, S. Tebo, et al., Intravenous cocaine and QT variability. J. Cardiovasc. Electrophysiol., 2006;17: 610–616.

    Article  PubMed  Google Scholar 

  135. Thomsen, M.B., P.G. Volders, J.D. Beekman, et al., Beat-to-beat variability of repolarization determines proarrhythmic outcome in dogs susceptible to drug-induced Torsades de Pointes. J. Am. Coll. Cardiol., 2006;48: 1268–1276.

    Article  PubMed  CAS  Google Scholar 

  136. Thomsen, M., A. Oros, M. Schoenmakers, et al., Proarrhythmic electrical remodeling is associated with increased beat-to-beat variability of repolarization. Cardiovasc. Res., 2007;73: 521–530.

    Article  PubMed  CAS  Google Scholar 

  137. Henneberger, A., W. Zareba, A. Ibald-Mulli, et al., Repolarization changes induced by air pollution in ischemic heart disease patients. Environ. Health. Perspect., 2005;113: 440–446.

    Article  PubMed  CAS  Google Scholar 

  138. Piccirillo, G., R. Quaglione, M. Nocco et al., Effects of long-term beta-blocker (metoprolol or carvedilol) therapy on QT variability in subjects with chronic heart failure secondary to ischemic cardiomyopathy. Am. J. Cardiol. 2002;90: 1113–1117.

    Article  PubMed  CAS  Google Scholar 

  139. Bonnemeier, H., F. Hartmann, U.K. Wiegand, et al., Course and prognostic implications of QT interval and QT variability after primary coronary angioplasty in acute myocardial infarction. J. Am. Coll. Cardiol., 2001;37: 44–50.

    Article  PubMed  CAS  Google Scholar 

  140. Atiga, W.L., Calkins, H., Lawrence, J.H., et al., Beat-to-beat repolarization lability identifies patients at risk for sudden cardiac death. J. Cardiovasc. Electrophysiol., 1998;9: 899–908.

    Article  PubMed  CAS  Google Scholar 

  141. Haigney, M.C., W. Zareba, P.J. Gentlesk, et al., and the MADIT II Investigators. QT interval variability and spontaneous ventricular tachycardia or fibrillation in the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II patients. J. Am. Coll. Cardiol., 2004;44: 1481–1487.

    Google Scholar 

  142. Piccirillo, G., D. Magri, S. Matera, et al. QT variability strongly predicts sudden cardiac death in asymptomatic subjects with mild or moderate left ventricular dysfunction: a prospective study. Eur. Heart. J. 2007;28: 1344–1350.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London Ltd.

About this entry

Cite this entry

Zareba, W., Cygankiewicz, I. (2010). The QT Interval. In: Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., Camm, J. (eds) Comprehensive Electrocardiology. Springer, London. https://doi.org/10.1007/978-1-84882-046-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-046-3_19

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-045-6

  • Online ISBN: 978-1-84882-046-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics