Skip to main content

Statistical Methods for Quality and Productivity Improvement

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

The first section of this chapter introduces statistical process control SPC and robust design RD, two important statistical methodologies for quality and productivity improvement. Section 10.1 describes in-depth SPC theory and tools for monitoring independent and autocorrelated data with a single quality characteristic. The relationship between SPC methods and automatic process control methods is discussed and differences in their philosophies, techniques, efficiencies, and design are contrasted. SPC methods for monitoring multivariate quality characteristics are also briefly reviewed.

Section 10.2 considers univariate RD, with emphasis on experimental design, performance measures and modeling of the latter. Combined and product arrays are featured and performance measures examined, include signal-to-noise ratios SNR, PerMIAs, process response, process variance and desirability functions. Of central importance is the decomposition of the expected value of squared-error loss into variance and off-target components which sometimes allows the dimensionality of the optimization problem to be reduced.

Section 10.3 deals with multivariate RD and demonstrates that the objective function for the multiple characteristic case is typically formed by additive or multiplicative combination of the univariate objective functions. Some alternative objective functions are examined as well as strategies for solving the optimization problem.

Section 10.4 defines dynamic RD and summarizes related publications in the statistics literature, including some very recent entries. Section 10.5 lists RD case studies originating from applications in manufacturing, reliability and tolerance design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APC:

automatic process control

ARL:

average run length

ARMA:

autoregressive and moving average

COT:

cumulative sum of T

CV:

coefficient of variance

DRD:

dynamic robust design

EWMAST:

exponentially weighted moving average chart for stationary processes

GLM:

general linear model

GLRT:

generalized likelihood ratio test

MMSE:

minimum mean squared error

NBM:

nonoverlapping batch means

NTB:

nominal-the-best case

OBM:

overlapping batch means

PID:

proportional-integral-derivative

RD:

Robust design

RSM:

response surface method

RSM:

response surface models

SCC:

special-cause charts

SNR:

signal-to-noise ratios

SPC:

statistical process control

STS:

standardized time series

UBM:

unified batch mean

WBM:

weighted batch mean

References

  1. D. C. Montgomery: Introduction to Statistical Quality Control, Vol. 3rd edn. (Wiley, New York 1996)

    Google Scholar 

  2. D. C. Montgomery, W. H. Woodall: A discussion on statistically-based process monitoring and control, J. Qual. Technol. 29, 121–162 (1997)

    Google Scholar 

  3. W. H. Woodall, K.-L. Tsui, G. R. Tucker: A review of statistical and fuzzy quality control charts based on categorical data. In: Frontiers in Statistical Quality Control, Vol. 5, ed. by H.-J. Lenz, P. Wilrich (Physica, Heidelberg 1997) pp. 83–89

    Google Scholar 

  4. G. Taguchi: Introduction to Quality Engineering: Designing Quality into Products and Processes (Asian Productivity Organization, Tokyo 1986)

    Google Scholar 

  5. M. S. Phadke, R. N. Kackar, D. V. Speeney, M. J. Grieco: Off-line quality control integrated circuit fabrication using experimental design, The Bell Sys. Tech. J. 1, 1273–1309 (1983)

    Google Scholar 

  6. R. N. Kackar, A. C. Shoemaker: Robust design: A cost effective method for improving manufacturing process, ATT Tech. J. 65, 39–50 (1986)

    Google Scholar 

  7. W. H. Woodall, D. C. Montgomery: Research issues and ideas in statistical process control, J. Qual. Technol. 31, 376–386 (1999)

    Google Scholar 

  8. C. A. Lowry, D. C. Montgomery: A review of multivariate control charts, IIE Trans. Qual. Reliab. 27, 800–810 (1995)

    Google Scholar 

  9. R. L. Mason, C. W. Champ, N. D. Tracy, S. J. Wierda, J. C. Young: Assessment of multivariate process control techniques, J. Qual. Technol. 29, 140–143 (1997)

    Google Scholar 

  10. R. N. Kackar: Off-line quality control, parameter design, and the Taguchi method, J. Qual. Technol. 17, 176–209 (1985)

    Google Scholar 

  11. R. V. Leon, A. C. Shoemaker, R. N. Kackar: Performance measure independent of adjustment: An explanation and extension of Taguchiʼs signal to noise ratio, Technometrics 29, 253–285 (1987)

    MathSciNet  MATH  Google Scholar 

  12. G. E. P. Box: Signal to noise ratios, performance criteria and transformations, Technometrics 30, 1–31 (1988)

    MathSciNet  MATH  Google Scholar 

  13. V. N. Nair: Taguchiʼs parameter design: A panel discussion, Technometrics 34, 127–161 (1992)

    MathSciNet  Google Scholar 

  14. K.-L. Tsui: A critical look at Taguchiʼs modelling approach, J. Appl. Stat. 23, 81–95 (1996)

    Google Scholar 

  15. N. Logothetis, A. Haigh: Characterizing and optimizing multi-response processes by the Taguchi method, Qual. Reliab. Eng. Int. 4, 159–169 (1988)

    Google Scholar 

  16. J. J. Pignatiello: Strategies for robust multiresponse quality engineering, IIE Trans. Qual. Reliab. 25, 5–25 (1993)

    Google Scholar 

  17. E. A. Elsayed, A. Chen: Optimal levels of process parameters for products with multiple characteristics, Int. J. Prod. Res. 31, 1117–1132 (1993)

    Google Scholar 

  18. K.-L. Tsui: Robust design optimization for multiple characteristic problems, Int. J. Prod. Res. 37, 433–445 (1999)

    MATH  Google Scholar 

  19. W. A. Shewhart: Economic Control of Quality of Manufactured Product (Van Nostrand, New York 1931)

    Google Scholar 

  20. G. E. P. Box, T. Kramer: Statistical process monitoring and feedback adjustment - A discussion, Technometrics 34, 251–285 (1992)

    MathSciNet  Google Scholar 

  21. W. E. Deming: The New Economics: For Industry, Government, Education, 2nd edn. (MIT Center for Advanced Engineering Study, Cambridge 1996)

    Google Scholar 

  22. S. W. Roberts: Control chart tests based on geometric moving averages, Technometrics 1, 239–250 (1959)

    Google Scholar 

  23. J. M. Lucas, M. S. Saccucci: Exponentially weighted moving average control schemes: Properties and enhancements, Technometrics 32, 1–12 (1990)

    MathSciNet  Google Scholar 

  24. E. S. Page: Continuous inspection schemes, Biometrika 41, 100–115 (1954)

    MathSciNet  MATH  Google Scholar 

  25. T. J. Harris, W. M. Ross: Statistical process control for correlated observations, Cdn. J. Chem. Eng. 69, 48–57 (1991)

    Google Scholar 

  26. L. C. Alwan: Effects of autocorrelation on control chart performance, Commun. Stat. Theory Methods 41, 1025–1049 (1992)

    Google Scholar 

  27. R. A. Johnson, M. Bagshaw: The effect of serial correlation on the performance of CUSUM test, Technometrics 16, 103–112 (1974)

    MathSciNet  MATH  Google Scholar 

  28. M. Bagshaw, R. A. Johnson: The effect of serial correlation on the performance of CUSUM test II, Technometrics 17, 73–80 (1975)

    MathSciNet  Google Scholar 

  29. N. F. Zhang: A statistical control chart for stationary process data, Technometrics 40, 24–38 (1998)

    MathSciNet  MATH  Google Scholar 

  30. W. Jiang, K.-L. Tsui, W. H. Woodall: A new SPC monitoring method: The ARMA chart, Technometrics 42, 399–410 (2000)

    Google Scholar 

  31. L. C. Alwan, H. V. Roberts: Time-series modeling for statistical process control, J. Bus. Econ. Stat. 6, 87–95 (1988)

    Google Scholar 

  32. C. R. Superville, B. M. Adams: An evaluation of forecast-based quality control schemes, Commun. Stat. Sim. Comp. 23, 645–661 (1994)

    MathSciNet  MATH  Google Scholar 

  33. D. G. Wardell, H. Moskowitz, R. D. Plante: Control charts in the presence of data correlation, Man. Sci. 38, 1084–1105 (1992)

    MATH  Google Scholar 

  34. D. G. Wardell, H. Moskowitz, R. D. Plante: Run-length distributions of special-cause control charts for correlated observations, Technometrics 36, 3–17 (1994)

    MathSciNet  MATH  Google Scholar 

  35. S. A. Van der Wiel: Monitoring processes that wander usingtegrated moving average models, Technometrics 38, 139–151 (1996)

    MATH  Google Scholar 

  36. D. C. Montgomery, C. M. Mastrangelo: Some statistical process control methods for autocorrelated data, J. Qual. Technol. 23, 179–204 (1991)

    Google Scholar 

  37. W. Jiang, H. Wu, F. Tsung, V. N. Nair, K.-L. Tsui: PID-based control charts for process monitoring, Technometrics 44, 205–214 (2002)

    MathSciNet  Google Scholar 

  38. D. W. Apley, J. Shi: The GLRT for statistical process control of autocorrelated processes, IIE Trans. Qual. Reliab. 31, 1123–1134 (1999)

    Google Scholar 

  39. W. Jiang: Multivariate control charts for monitoring autocorrelated processes, J. Qual. Technol. 36, 367–379 (2004)

    Google Scholar 

  40. D. W. Apley, F. Tsung: The autoregressive T 2 chart for monitoring univariate autocorrelated processes, J. Qual. Technol. 34, 80–96 (2002)

    Google Scholar 

  41. G. C. Runger, T. R. Willemain: Model-based and model-free control of autocorrelated processes, J. Qual. Technol. 27, 283–292 (1995)

    Google Scholar 

  42. G. C. Runger, T. R. Willemain: Batch means charts for autocorrelated data, IIE Trans. Qual. Reliab. 28, 483–487 (1996)

    Google Scholar 

  43. D. P. Bischak, W. D. Kelton, S. M. Pollock: Weighted batch means for confidence intervals in steady-state simulations, Man. Sci. 39, 1002–1019 (1993)

    MATH  Google Scholar 

  44. C. Alexopoulos, D. Goldsman, K.-L. Tsui, W. Jiang: SPC monitoring and variance estimation. In: Frontiers in Statistical Quality Control, Vol. 7, ed. by H.-J. Lenz, P. T. Wilrich (Physica, Heidelberg 2004) pp. 194–210

    Google Scholar 

  45. G. E. P. Box, G. M. Jenkins: Time Series Analysis, Forecasting and Control (Prentice-Hall, Englewood Cliffs 1976)

    MATH  Google Scholar 

  46. G. E. P. Box, A. Luceno: Statistical Control by Monitoring and Feedback Adjustment (Wiley, New York 1997)

    MATH  Google Scholar 

  47. S. A. Van der Wiel, W. T. Tucker, F. W. Faltin, N. Doganaksoy: Algorithmic statistical process control: Concepts and application, Technometrics 34, 278–281 (1992)

    Google Scholar 

  48. W. T. Tucker, F. W. Faltin, S. A. Van der Wiel: Algorithmic statistical process control: An elaboration, Technometrics 35, 363–375 (1993)

    Google Scholar 

  49. E. Sachs, A. Hu, A. Ingolfsson: Run by run process control: Combining SPC and feedback control, IEEE Trans. Semicond. Manufact. 8, 26–43 (1995)

    Google Scholar 

  50. W. S. Messina, D. C. Montgomery, J. B. Keats, G. C. Runger: Strategies for statistical monitoring of integral control for the continuous process industry. In: Statistical Applications in Process Control, ed. by J. B. Keats, D. C. Montgomery (Marcel-Dekker, New York 1996) pp. 193–215

    Google Scholar 

  51. C. Capilla, A. Ferrer, R. Romero, A. Hualda: Integration of statistical and engineering process control in a continuous polymerization process, Technometrics 41, 14–28 (1999)

    Google Scholar 

  52. W. Jiang, K.-L. Tsui: An economic model for integrated APC and SPC control charts, IIE Trans. Qual. Reliab. 32, 505–513 (2000)

    Google Scholar 

  53. W. Jiang, K.-L. Tsui: SPC monitoring of MMSE- and PI-controlled processes, J. Qual. Technol. 34, 384–398 (2002)

    Google Scholar 

  54. T. Kourti, P. Nomikos, J. F. MacGregor: Analysis, monitoring and fault diagnosis of batch processesusing multiblock and multiway PLS, J. Proc. Control 5, 277–284 (1995)

    Google Scholar 

  55. W. Li, C. F. J. Wu: An integrated method of parameter design and tolerance design, Qual. Eng. 11, 417–425 (1999)

    Google Scholar 

  56. F. Tsung, D. W. Apley: The dynamic T-squared chart for monitoring feedback-controlled processes, IIE Trans. Qual. Reliab. 34, 1043–1054 (2002)

    Google Scholar 

  57. W. Jiang: A joint spc monitoring scheme for APC-controlled processes, IIE Trans. Qual. Reliab. , 1201–1210 (2004)

    Google Scholar 

  58. R. A. Boyles: Phase I analysis for autocorrelated processes, J. Qual. Technol. 32, 395–409 (2000)

    Google Scholar 

  59. J. D. Cryer, T. P. Ryan: The estimation of Sigma for an X chart: MR/d2 or S/d4 ?, J. Qual. Technol. 22, 187–192 (1990)

    Google Scholar 

  60. J. Berube, V. Nair: Exploiting the inherent structure in robust parameter design experiments, Stat. Sinica 8, 43–66 (1998)

    MathSciNet  MATH  Google Scholar 

  61. A. Luceno: Performance of discrete feedback adjustment schemes with dead band under stationary versus non-stationary stochastic disturbance, Technometrics 27, 223–233 (1998)

    Google Scholar 

  62. D. W. Apley, H. C. Lee: Design of exponentially weighted moving average control charts for autocorrelated processes with model uncertainty, Technometrics 45, 187–198 (2003)

    MathSciNet  Google Scholar 

  63. H. Hotelling: Multivariate quality control. In: Techniques of Statistical Analysis, ed. by C. Eisenhart, M. W. Hastay, W. A. Wallis (McGraw-Hill, New York 1947)

    Google Scholar 

  64. C. A. Lowry, W. H. Woodall, C. W. Champ, S. E. Rigdon: A multivariate exponential weighted moving average control chart, Technometrics 34, 46–53 (1992)

    MATH  Google Scholar 

  65. K. B. Crosier: Multivariate generalizations of cumulative sum quality control schemes, Technometrics 30, 291–303 (1988)

    MathSciNet  MATH  Google Scholar 

  66. J. J. Pignatiello, G. C. Runger: Comparisons of multivariate CUSUM charts, J. Qual. Technol. 22, 173–186 (1990)

    Google Scholar 

  67. J. E. Jackson: Multivariate quality control, Commun. Stat. Theory Methods 14, 2657–2688 (1985)

    MATH  Google Scholar 

  68. R. L. Mason, N. D. Tracy, J. C. Young: Decomposition of T 2 for multivariate control chart interpretation, J. Qual. Technol. 27, 99–108 (1995)

    Google Scholar 

  69. D. M. Hawkins: Regression adjustment for variables in multivariate quality control, J. Qual. Control 25, 170–182 (1993)

    Google Scholar 

  70. A. J. Hayter, K.-L. Tsui: Identification and quantification in multivariate quality control problems, J. Qual. Technol. 26, 197–208 (1994)

    Google Scholar 

  71. W. Jiang, K.-L. Tsui: Comparison of individual multivariate control charts, submitted for publication

    Google Scholar 

  72. W. J. Welch, T.-K. Yu, S. M. Kang, J. Sacks: Computer experiments for quality control by parameter design, J. Qual. Technol. 22, 15–22 (1990)

    Google Scholar 

  73. S. Ghosh, E. Derderian: Robust experimental plan and its role in determining robust design against noise factors, The Statistican 42, 19–28 (1993)

    Google Scholar 

  74. A. Miller, R. R. Sitter, C. F. J. Wu, D. Long: Are large Taguchi-style experiments necesarry? A reanalysis of gear and pinion data, Qual. Eng. 6, 21–38 (1993)

    Google Scholar 

  75. J. M. Lucas: Using response surface methodology to achieve a robust process, Annual Quality Congress Transactions, Milwaukee, WI 45, 383–392 (1990)

    Google Scholar 

  76. P. R. Rosenbaum: Some useful compound dispersion experiments in quality design, Technometrics 38, 248–260 (1996)

    MathSciNet  Google Scholar 

  77. C. F. J. Wu, M. Hamada: Experiments: Planning, Analysis and Parameter Design Optimization (Wiley, New York 2000)

    MATH  Google Scholar 

  78. R. N. Kackar, K.-L. Tsui: Interaction graphs: graphical aids for planning experiments, J. Qual. Technol. 22, 1–14 (1990)

    Google Scholar 

  79. R. N. Kackar, E. S. Lagergren, J. J. Filliben: Taguchiʼs fixed-element arrays are fractional factorials, J. Qual. Technol. 23, 107–116 (1991)

    Google Scholar 

  80. X. Hou, C. F. J. Wu: On the determination of robust settings in parameter design experiments, Univ. Michigan Tech. Rep. 321 (1997)

    Google Scholar 

  81. D. Bingham, R. Sitter: Minimum-aberration two-level fractional factorial split-plot designs, Technometrics 41, 62–70 (1999)

    Google Scholar 

  82. W. Dumouchel, B. Jones: A simple bayesian modification of D-optimal designs to reduce dependence on an assumed model, Technometrics 36, 37–47 (1994)

    MATH  Google Scholar 

  83. A. C. Atkinson, R. D. Cook: D-optimum designs for heteroscedastic linear models, J. Am. Stat. Assoc. 90, 204–212 (1994)

    MathSciNet  Google Scholar 

  84. G. G. Vining, D. Schaub: Experimental designs for estimating both mean and variance functions, J. Qual. Technol. 28, 135–147 (1996)

    Google Scholar 

  85. S. Chang: An algorithm to generate near D-optimal designs for multiple response surface models, IIE Trans. Qual. Reliab. 29, 1073–1081 (1997)

    Google Scholar 

  86. D. P. Mays: Optimal central composite designs in the presence of dispersion effects, J. Qual. Technol. 31, 398–407 (1999)

    Google Scholar 

  87. M. Pledger: Observable uncontrollable factors in parameter design, J. Qual. Technol. 28, 153–162 (1996)

    Google Scholar 

  88. P. R. Rosenbaum: Blocking in compound dispersion experiments, Technometrics 41, 125–134 (1999)

    MathSciNet  MATH  Google Scholar 

  89. W. Li, C. J. Nachtsheim: Model-robust factorial designs, Technometrics 42, 345–352 (2000)

    Google Scholar 

  90. K. L. Tsui, A. Li: Analysis of smaller-and-larger-the better robust design experiments, Int. J. Ind. Eng. 1, 193–202 (1994)

    Google Scholar 

  91. J. Berube, C. F. J. Wu: Signal-to-noise ratio and related measures parameter design optimization, Univ. Michigan Tech. Rep. 321 (1998)

    Google Scholar 

  92. S. Maghsoodloo: The exact relation of Taguchiʼs signal-to-noise ratio to his quality loss function, J. Qual. Technol. 22, 57–67 (1990)

    Google Scholar 

  93. R. V. Leon, C. F. J. Wu: Theory of performance measures in parameter design, Stat. Sinica 2, 335–358 (1992)

    MathSciNet  MATH  Google Scholar 

  94. V. N. Nair, D. Pregibon: A data analysis strategy for quality engineering experiments, ATT Tech. J. 65, 73–84 (1986)

    Google Scholar 

  95. G. G. Vining, R. H. Myers: Combining Taguchi and response surface philosophies: A dual response approach, J. Qual. Technol. 22, 38–45 (1990)

    Google Scholar 

  96. K. A. Copeland, P. R. Nelson: Dual response optimization via direct function minimization, J. Qual. Technol. 28, 331–336 (1996)

    Google Scholar 

  97. E. Del Castillo, D. C. Montgomery: A nonlinear programming solution to the dual response problem, J. Qual. Technol. 25, 199–204 (1993)

    Google Scholar 

  98. D. K. Lin, W. Tu: Dual response surface optimization, J. Qual. Technol. 28, 496–498 (1995)

    Google Scholar 

  99. E. C. Harrington: The desirability function, Ind. Qual. Control 21, 494–498 (1965)

    Google Scholar 

  100. K. K. Ng, K.-L. Tsui: Expressing variability and yield with a focus on the customer, Qual. Eng. 5, 255–267 (1992)

    Google Scholar 

  101. V. R. Joseph, C. F. J. Wu: Operating window experiments: A novel approach to quality improvement, J. Qual. Technol. 34, 345–354 (2002)

    Google Scholar 

  102. V. R. Joseph, C. F. J. Wu: Failure amplification method: An information maximization approach to categorical response optimization, Technometrics 46, 1–31 (2004)

    MathSciNet  Google Scholar 

  103. R. H. Myers, A. I. Khuri, G. Vining: Response surface alternatives to the Taguchi robust parameter design approach, Am. Stat. 46, 131–139 (1992)

    Google Scholar 

  104. R. H. Myers, Y. Kim, K. L. Griffiths: Response surface methods and the use of noise variables, J. Qual. Technol. 29, 429–440 (1997)

    Google Scholar 

  105. G. E. P. Box, R. D. Meyer: Dispersion effects from fractional designs, Technometrics 28, 19–28 (1986)

    MathSciNet  MATH  Google Scholar 

  106. R. V. Lenth: Quick and easy analysis of unreplicated factorials, Technometrics 31, 469–473 (1989)

    MathSciNet  Google Scholar 

  107. G. H. Pan: The impact of unidentified location effects on dispersion-effects identification from unreplicated factorial designs, Technometrics 41, 313–326 (1999)

    MathSciNet  MATH  Google Scholar 

  108. R. N. McGrath, D. K. Lin: Confounding of location and dispersion effects in unreplicated fractional factorials, J. Qual. Technol. 33, 129–139 (2001)

    Google Scholar 

  109. J. A. Nelder, R. W. Wedderburn: Generalized linear models, J. Qual. Technol. 14, 370–384 (1972)

    Google Scholar 

  110. J. A. Nelder, Y. G. Lee: Generalized linear models for the analysis of Taguchi type experiments, J. Qual. Technol. 7, 107–120 (1991)

    Google Scholar 

  111. J. Engel, A. F. Huele: Joint modeling of mean and dispersion, J. Qual. Technol. 38, 365–373 (1996)

    MATH  Google Scholar 

  112. M. Hamada, J. A. Nelder: Generalized linear models for quality-improvement experiments, J. Qual. Technol. 29, 292–304 (1997)

    Google Scholar 

  113. H. Chipman, M. Hamada: Bayesian analysis of ordered categorical data from industrial experiments, Technometrics 38, 1–10 (1996)

    MATH  Google Scholar 

  114. H. Chipman: Handling uncertainty in analysis of robust design experiments, J. Qual. Technol. 30, 11–17 (1998)

    Google Scholar 

  115. G. E. P. Box, R. D. Meyer: Finding the active factors in fractionated screening experiments, J. Qual. Technol. 25, 94–105 (1993)

    Google Scholar 

  116. J. L. Ribeiro, E. A. Elsayed: A case study on process optimization using the gradient loss function, Int. J. Prod. Res. 33, 3233–3248 (1995)

    MATH  Google Scholar 

  117. J. L. Ribeiro, F. Fogliatto, C. S. ten Caten: Minimizing manufacturing and quality costs in multiresponse optimization, Qual. Eng. 13, 191–201 (2000)

    Google Scholar 

  118. P. Kumar, P. B. Barua, J. L. Gaindhar: Quality optimization (multi-characteristics) through Taguchiʼs technique and utility concept, Qual. Reliab. Eng. Int. 16, 475–485 (2000)

    Google Scholar 

  119. N. Artiles-Leon: A pragmatic approach to multiple-response problems using loss functions, Qual. Eng. 9, 475–485 (1996)

    Google Scholar 

  120. A. E. Ames, N. Mattucci, S. MacDonald, G. Szonyi, D. M. Hawkins: Quality loss functions for optimization across multiple response surfaces, J. Qual. Technol. 29, 339–346 (1997)

    Google Scholar 

  121. V. R. Joseph: Quality loss functions for nonnegative variables and their applications, J. Qual. Technol. 36, 129–138 (2004)

    Google Scholar 

  122. G. Derringer, R. Suich: Simultaneous optimization of several response variables, J. Qual. Technol. 12, 214–219 (1980)

    Google Scholar 

  123. K.-J. Kim, Dennis K. J. Lin: Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions, Appl. Stat. 49, 311–325 (2000)

    MATH  Google Scholar 

  124. J. Duffy, S. Q. Liu, H. Moskowitz, R. Plante, P. V. Preckel: Assessing multivariate process/product yield via discrete point approximation, IIE Trans. Qual. Reliab. 30, 535–543 (1998)

    Google Scholar 

  125. F. S. Fogliatto, S. L. Albin: Variance of predicted response as an optimization criterion in multiresponse experiments, Qual. Eng. 12, 523–533 (2000)

    Google Scholar 

  126. R. D. Plante: Process capability: A criterion for optimizing multiple response product and process design, IIE Trans. Qual. Reliab. 33, 497–509 (2001)

    Google Scholar 

  127. S. Ghosh, E. Derderian: Determination of robust design against noise factors and in presence of signal factors, Commun. Stat. Sim. Comp. 24, 309–326 (1995)

    MathSciNet  MATH  Google Scholar 

  128. G. S. Wasserman: Parameter design with dynamic characteristics: A regression perspective, Qual. Reliab. Eng. Int. 12, 113–117 (1996)

    Google Scholar 

  129. A. Miller, C. F. J. Wu: Parameter design for signal-response systems: A different look at Taguchiʼs dynamic parameter design, Stat. Sci. 11, 122–136 (1996)

    Google Scholar 

  130. M. Lunani, V. N. Nair, G. S. Wasserman: Graphical methods for robust design with dynamic characteristics, J. Qual. Technol. 29, 327–338 (1997)

    Google Scholar 

  131. S. D. McCaskey, K.-L. Tsui: Analysis of dynamic robust design experiments, Int. J. Prod. Res. 35, 1561–1574 (1997)

    MATH  Google Scholar 

  132. K.-L. Tsui: Modeling and analysis of dynamic robust design experiments, IIE Trans. Qual. Reliab. 31, 1113–1122 (1999)

    Google Scholar 

  133. V. R. Joseph, C. F. J. Wu: Robust parameter design of multiple target systems, Technometrics 44, 338–346 (2002)

    MathSciNet  Google Scholar 

  134. V. R. Joseph, C. F. J. Wu: Performance measures in dynamic parameter design, J. Jpn. Qual. Eng. Soc. 10, 82–86 (2002)

    Google Scholar 

  135. V. R. Joseph: Robust parameter design with feed-forward control, Technometrics 45, 284–292 (2003)

    MathSciNet  Google Scholar 

  136. P. Mesenbrink, J. C. Lu, R. McKenzie, J. Taheri: Characterization and optimization of a wave-soldering process, J. Am. Stat. Ass. 89, 1209–1217 (1994)

    Google Scholar 

  137. S. M. Lin, T. C. Wen: Experimental strategy -application of Taguchʼs quality engineering method to zinc phosphate coating uniformity, Plat. Surf. Finishing 81, 59–64 (1994)

    Google Scholar 

  138. D. Chhajed, T. J. Lowe: Tooling choices and product performance, IIE Trans. Qual. Reliab. 32, 49–57 (2000)

    Google Scholar 

  139. M. Hamada: Reliability improvement via Taguchiʼs robust design, Qual. Reliab. Eng. Int. 9, 7–13 (1993)

    Google Scholar 

  140. A. M. Kuhn, W. H. Carter, R. H. Myers: Incorporating noise factors into experiments with censored data, Technometrics 42, 376–383 (2000)

    MathSciNet  MATH  Google Scholar 

  141. J. R. Dʼerrico, N. A. Zaino: Statistical tolerancing using a modification of Taguchiʼs method, Technometrics 30, 397–405 (1988)

    Google Scholar 

  142. S. Bisgaard: Designing experiments for tolerancing assembled products, Technometrics 39, 142–152 (1997)

    MathSciNet  MATH  Google Scholar 

  143. C. C. Zhang, H. P. Wang: Robust design of assembly and machining tolerance allocations, IIE Trans. Qual. Reliab. 30, 17–29 (1998)

    Google Scholar 

  144. S. Maghsoodloo, M. H. Li: Optimal asymmetric tolerance design, IIE Trans. Qual. Reliab. 32, 1127–1137 (2000)

    Google Scholar 

  145. H. Moskowitz, R. Plante, J. Duffy: Multivariate tolerance design using quality loss, IIE Trans. Qual. Reliab. 33, 437–448 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Jiang , Terrence Murphy or Kwok-Leung Tsui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Jiang, W., Murphy, T., Tsui, KL. (2006). Statistical Methods for Quality and Productivity Improvement. In: Pham, H. (eds) Springer Handbook of Engineering Statistics. Springer Handbooks. Springer, London. https://doi.org/10.1007/978-1-84628-288-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-84628-288-1_10

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-806-0

  • Online ISBN: 978-1-84628-288-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics