Mineral and Thermal Waters

  • Adam PorowskiEmail author
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Codex Alimentarius

Collection of internationally recognized standards, codes of practice, guidelines, definitions, and recommendations relating to food, food production and processing, and food safety, including standards for bottled drinking waters and natural mineral waters. The Codex Alimentarius is developed and maintained by the Codex Alimentarius Commission established in November 1961 by the Food and Agriculture Organization of the United Nations (FAO). The World Health Organization (WHO) joined the Commission in June 1962. The first session of the Commission was held in Rome in October 1963.

Curative water

Groundwater which meets the standards of mineral water (i.e., at least 1 g/kg dissolved solid) or which contains less than 1 g/kg of dissolved solids but having concentration of pharmacologically active compound above the lower limit, including temperature above 20 °C (i.e., thermal water).

Geothermal energy resources

Total amount of thermal energy (heat) accumulated...


  1. 1.
    Shiklomanov I (1993) World fresh water resources. In: Gleick PH (ed) Water in crisis: a guide to the world’s fresh water resources. Oxford University Press, New York, pp 14–24Google Scholar
  2. 2.
    Perlman H (2016) Educational materials.
  3. 3.
    Evans J, Perlman H (2016) USGS educational materials.
  4. 4.
    Dowgiałło J, Karski A, Potocki I (1969) Geologia surowców balneologicznych. Wydawnictwa Geologiczne, Warszawa, p 296. [in Polish only]Google Scholar
  5. 5.
    Grünhut L, Hintz E (1907) Einteilung der mineralwässer. Deutsches Bäderbuch, LeipzigGoogle Scholar
  6. 6.
    Davis SN (1964) The chemistry of saline waters by R.A. Krieger – discussion. Groundwater 2(1):51–51Google Scholar
  7. 7.
    Krieger RA (1963) The chemistry of saline waters. Groundwater 1(4):7–12CrossRefGoogle Scholar
  8. 8.
    Pazdro Z, Kozerski B (1990) Hydrogeology. Wydawnictwa Geologiczne, Warszawa, p 624Google Scholar
  9. 9.
    LaMoreaux PE, Tanner JT (2001) Springs and bottled waters of the world. Ancient history, source, occurrence, quality and use. Springer, Berlin, p 315CrossRefGoogle Scholar
  10. 10.
    Prochorov A (ed) (1969–1978) Great Soviet encyclopedia, III edn. Soviet Encyclopedia Publishing House, Moscow.
  11. 11.
    Harrison R, Mortimer ND, Smarason OB (1990) Geothermal heating. A handbook of engineering economics. Pergmon Press, Brussels–Luxembourg, p 558Google Scholar
  12. 12.
    Cataldi R (1999) The year zero in geothermics. In: Cataldi R, Hodgson S, Lund JW (eds) Stories from a heated Earth. Our geothermal heritage. Geothermal Resources Council and International Geothermal Association, Sacramento, pp 7–17Google Scholar
  13. 13.
    Fridleifsson IB (2000) Geothermal energy for the benefit of the people worldwide. In: Proceedings of the world geothermal congress 2000, Kyushu-Tohoku, JapanGoogle Scholar
  14. 14.
    Kępińska B (2006) Geothermal waters in the history of civilization. In: Górecki W, Hajto M (eds) Atlas of geothermal resources of Mesozoic formations in the Polish Lowlands. AGH, Goldruk, Kraków, p 482Google Scholar
  15. 15.
    Lund, JW (2005) Balneological use of thermal waters, short courses of the world geothermal congress. Course on integration use of geothermal waters, Antalya, 2005Google Scholar
  16. 16.
    Ross K (2001) Health tourism: an overview HSMAI Marketing review. Online document.
  17. 17.
    Albu M, Banks D, Nash H (1997) Mineral and thermal groundwater resources. Springer, Dordrecht, p 431CrossRefGoogle Scholar
  18. 18.
    Alderson F (1973) The inland resorts and spas of Britain. David & Charles, Newton Abbott, DevonGoogle Scholar
  19. 19.
    Rockel I (1986) Taking the waters – early spas in New Zealand. Government Printing Office Publishing, Wellington, p 195Google Scholar
  20. 20.
    Lund JW (1993) Spas and balneology in the United States. GHC Q Bull 14:1–3Google Scholar
  21. 21.
    Wang Ji-Yang (1995) Historical aspects of geothermal use in China. Proceedings of the world geothermal congress, Florence, 18–31 May 1995Google Scholar
  22. 22.
    Sekioka M (1995) Geothermal energy in history. The case of Japan. Proceedings of the world geothermal congress, Florence, 18–31 May 1995Google Scholar
  23. 23.
    Swanner GM (1988) Saratoga – queen of spas. North Country Books, Inc., Utica, p 304Google Scholar
  24. 24.
    Jianli N, Jinkai L, Chengzhi W, Shuqiang Q (1993) The control and protection of groundwater in fractured gneiss during coal mining, in hydrogeology of hard rocks. In: Banks SB, Banks D (eds) Proceedings XXIVth congress of the international association of hydrogeologists, 28 June–2 July 1993, Oslo, pp 259–264Google Scholar
  25. 25.
    Phillips J (2004) Russia. Spa Bus Mag (4).
  26. 26.
    Kropotkin PN, Polyak BG (1973) The energy balance of the Earth. In: Zemnaya kora seismoopasnyh zon (The Earth’s crust of seismohazardous zones). Nauka, Moscow, pp 7–24Google Scholar
  27. 27.
    Polyak BG (1988) Teplomassopotok iz mantii v glavnyh strukturah ziemnoj kory (Heat-mass flow from the mantle in main structures of the Earth’s crust). Nauka, Moscow, p 192. [in Russian only]Google Scholar
  28. 28.
    Kononov VI (2002) Geothermal resources of Russia and their utilization. Lithol Miner Resour 37(2):97–106CrossRefGoogle Scholar
  29. 29.
    Dickson MH, Fanelli M (2003) Geothermal energy: utilization and technology. UNESCO and Taylor & Francis Group, Paris, p 66Google Scholar
  30. 30.
    Muffler LJP, Cataldi R (1978) Methods for regional assessment of geothermal resources. Geothermics 7:53–89CrossRefGoogle Scholar
  31. 31.
    Górecki W, Hajto M et al (eds) (2006) Atlas of geothermal resources of Paleozoic formations in the Polish Lowlands. AGH, Goldruk, Kraków, p 240Google Scholar
  32. 32.
    Polyak BG, Smirnov YB (1966) Heat flow on continents. Dokl Akad Nauk SSSR 168(1):170–172Google Scholar
  33. 33.
    Polyak BG, Smirnov YB (1968) Relationship between terrestrial heat flow and tectonic structure of continents. Geotektonika 4:3–19Google Scholar
  34. 34.
    Smirnov YB, Kononov VI (1991) Geothermal studies and superdeep drilling. Soviet Geol 8:28–37Google Scholar
  35. 35.
    Kononov VI, Yudahin FN, Svalova WB (1993) Geotermia seismicheskih i aseismicheskih zon. Nauka, Moscow, p 400. [in Russian only]Google Scholar
  36. 36.
    Górecki W, Hajto M et al (eds) (2006) Atlas of geothermal resources of Mesozoic formations in the Polish Lowlands. AGH, Goldruk, Kraków, p 484Google Scholar
  37. 37.
    Hochstein MP (1990) Classification and assessment of geothermal resources. In: Dickson MH, Fanelli M (eds) Small geothermal resources: a guide to development and utilization, UNITAR, New York, pp 31–57Google Scholar
  38. 38.
    Benderitter Y, Cormy G (1990) Possible approach to geothermal research and relative costs. In: Dickson MH, Fanelli M (eds) Small geothermal resources: a guide to development and utilization. UNITAR, New York, pp 59–69Google Scholar
  39. 39.
    Nicholson K (1993) Geothermal fluids, vol XVIII. Springer, Berlin, p 264CrossRefGoogle Scholar
  40. 40.
    Axelsson G, Gunnlaugsson E (2000) Background: geothermal utilization, management and monitoring. In: Long exploitation, IGA, WGC 2000 short courses, Kokonoc, KyushuGoogle Scholar
  41. 41.
    Górecki W et al (1993) Metodyka oceny zasobów energii wód geotermalnych w Polsce. Ekspertyza 12/93 MOŚZNiL, Arch. ZSE AGH, Kraków [expertise, in Polish only]Google Scholar
  42. 42.
    Górecki W et al (1994) Określenie odnawialnych zasobów energii geotermalnej na Niżu Polskim. Spraw. z wykonania projektu badawczego KBN nr 901279101. Arch. ZSE AGH, Kraków [scientific project report; in Polish only]Google Scholar
  43. 43.
    Górecki W et al (1995) Atlas zasobów energii geotermalnej na Niżu Polskim. ZSE AGH, Towarzystwo Geosynoptyków “GEOS,” Kraków [in Polish only]Google Scholar
  44. 44.
    Górecki W, Sowiżdżał A et al (eds) (2012) Geothermal atlas of Carpathian Foredeep. AGH UST, Kraków, p 418Google Scholar
  45. 45.
    Hajto M (2016) A brief glossary of Polish and the UNFC-2009 classifications and nomenclature of geothermal resources assessment. Proceedings of the European geothermal congress, Strasbourg, 19–24 September 2016, pp 1–6Google Scholar
  46. 46.
    McKelvey VE (1974) Mineral resource estimates and public policy. Am Sci 60:32–40Google Scholar
  47. 47.
    Gosk E (1982) Geothermal resources assessment. In: Čermak V, Haenel R (eds) Geothermics and geothermal energy. E. Schveizerbart’sche Verlagsbuchhandlug, Stuttgard, p 299Google Scholar
  48. 48.
    Haenel R (1982) Geothermal resource and reserve assessment. Report NLfB, Archive No 95 100, HannoverGoogle Scholar
  49. 49.
    Haenel R, Staroste E (1988) Atlas of geothermal resources in the European community. Austria and Switzerland. Verlag Th Schäfer, Hannover, 110 plates, p 74Google Scholar
  50. 50.
    Haenel R, Hurter S (eds) (2002) Atlas of geothermal resources in Europe. Commission of the European Communities, Taf. Brüssel, Luxemburg, p 74Google Scholar
  51. 51.
    Sorey ML, Nathenson M, Smith C (1983) Methods for assessing low temperature geothermal resources. U.S. Geological Survey, Circural 892Google Scholar
  52. 52.
    ECE 2009 United Nations framework classification for fossil energy and mineral reserves and resources 2009. Economic commission for Europe, ECE series no. 39, p 20Google Scholar
  53. 53.
    Gringarten AC, Sauty JP (1975) A theoretical study of heat extraction from aquifer with uniform regional flow. J Geophys Res 80(35):4956–4962CrossRefGoogle Scholar
  54. 54.
    Lindal B (1973) Industrial and other applications of geothermal energy. In: HCH A (ed) Geothermal energy. UNESCO, Paris, pp 135–148Google Scholar
  55. 55.
    Gudmundsson JS (1988) The elements of direct uses. Geothermics 17:119–136CrossRefGoogle Scholar
  56. 56.
    Lund JW (2004) Geothermal direct-heat utilization. In: Kępińska B, Popovski K (eds) Proceedings of the international geothermal days Poland 2004, Kraków and Skopje, September 2004, pp 19–33Google Scholar
  57. 57.
    Muffler LJP (ed) (1979) Assessment of geothermal resources of the United States – 1978. USGS Circular 790, Arlington, p 163Google Scholar
  58. 58.
    Lund JW, Bjelm L, Bloomquist G, Mortensen AK (2008) Characteristics, development and utilization of geothermal resources – a Nordic perspective. Episodes 31(1):140–147Google Scholar
  59. 59.
    Lund JW, Boyd TL (2015) Direct utilization of geothermal energy 2015. Worldwide review. Proceedings of the world geothermal congress 2015, Melbourne, 19–25 AprilGoogle Scholar
  60. 60.
    Lund JW, Bertani R, Boyd T (2015) Worldwide geothermal energy utilization 2015. GRC Trans 39:79–92Google Scholar
  61. 61.
    Fanelli M, Dickson MH (2004) What is geothermal energy? Information provided in the official website of the International Geothermal Association (IGA).
  62. 62.
    MHDC (2008) Great Malvern conservation area. Appraisal and conservation strategy. Malvern Hills District Council, Planning Services, April 2008, p 83Google Scholar
  63. 63.
    Rodwan JG Jr (2017) Bottled water 2016: no. 1 and growing. U.S. and international developments and statistics. Bottled water reporter, IBWA, May/June, pp 12–21Google Scholar
  64. 64.
    Deffis JP, Fosselard P (2016) Natural mineral and spring waters. The natural choice for hydration. EFBW industry report., p 13
  65. 65.
    EFBW (2017) EU legislations on bottled waters. European Federation of Bottled Water.
  66. 66.
    Nathenson M, Muffler LJP (1975) Geothermal resources in hydro thermal convection systems and conduction dominated areas. In: White DE, Williams DL (eds) Assessment of geothermal resources of the United States – 1975. U.S. Geological Survey Circular 726, p 155Google Scholar
  67. 67.
    EFBW (2017) History of bottled water. European Federation of Bottled Water.
  68. 68.
    IBWA (2017) Regulations of bottled water. International Bottled Water Association.
  69. 69.
    IBWA (2017) Bottled water report. International Bottled Water Association.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Stable Isotope LaboratoryInstitute of Geological Sciences Polish Academy of Sciences (INGPAN)WarszawaPoland

Section editors and affiliations

  • James LaMoreaux
    • 1
  1. 1.P.E. LaMoreaux & Associates, Inc.TuscaloosaUSA

Personalised recommendations