Fresh Water Geochemistry: Overview

  • Pedro José DepetrisEmail author
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



An underground layer of water-bearing permeable rock, rock fractures, or porous unconsolidated materials (gravel, sand, or silt) from which groundwater can be obtained by means of a water well.


A mixture in which one substance of microscopically dispersed insoluble particles is suspended throughout another substance. The dispersed-phase particles have a diameter of approximately between 1 and 1000 nanometers (1 nm = 10−9 m).

Congruent dissolution

A mineral or salt is completely dissolved in water, adding elements to the solvent in the same proportions that existed in the original solid.

Conservative elements

Cl, SO42−, NO3, Ca2+, Mg2+, Na+, and K+ are considered conservative in the sense that their concentrations are unaltered by changes in pH, temperature, or pressure, assuming that no precipitation or dissolution of solid phases or biological transformations occur within the ranges normally found near the surface of the Earth.


Involves the...


Primary Literature

  1. 1.
    Montanarella L, Panagos P (2015) Policy relevance of Critical Zone Science. Land Use Policy 49:86–91CrossRefGoogle Scholar
  2. 2.
    White WM (2017) Geochemistry. In: White WM (ed) Encyclopedia of geochemistry. Springer, Heidelberg, pp 1–10Google Scholar
  3. 3.
    Reinhardt C (2008) Chemical sciences in the 20th century: bridging boundaries. Wiley, New YorkGoogle Scholar
  4. 4.
    Clarke FW (1908) Data of geochemistry. Bulletin, vol 330. US Geological Survey, Washington, DCGoogle Scholar
  5. 5.
    Clarke FW (1914) Water analyses from the laboratory of the United States Geological Survey, Water Supply Paper 364. US Geological Survey, Washington, DCGoogle Scholar
  6. 6.
    Field J, Little D (2009) Regolith and biota. In: Scott KM, Pain CF (eds) Regolith science. CSIRO Publishing/Springer, Collingwood/Dordrecht, pp 175–217Google Scholar
  7. 7.
    Allen PA (1997) Earth surface processes. Blackwell Science, OxfordCrossRefGoogle Scholar
  8. 8.
    Rankama K, Sahama TG (1950) Geochemistry. University of Chicago Press, ChicagoGoogle Scholar
  9. 9.
    Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean. A global synthesis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Shiklomanov IA, Rodda JC (eds) (2003) World water resources at the beginning of the 21st century. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. W. W. Norton, New YorkGoogle Scholar
  12. 12.
    Goldich SS (1938) A study in rock weathering. J Geol 46:17–58CrossRefGoogle Scholar
  13. 13.
    Bowen NL (1928) Evolution of the igneous rocks. Princeton University Press, PrincetonGoogle Scholar
  14. 14.
    McQueen KG (2009) Regolith geochemistry. In: Scot KM, Pain CF (eds) Regolith science. CSIRO Publishing/Springer, Collingwood/Dordrecht, pp 175–217Google Scholar
  15. 15.
    Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley-Interscience, New YorkGoogle Scholar
  16. 16.
    Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle RiverGoogle Scholar
  17. 17.
    Li Y-H (2000) A compendium of geochemistry. From solar nebula to the human brain. Princeton University Press, PrincetonGoogle Scholar
  18. 18.
    Pasquini AI, Depetris PJ (2007) Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: an overview. J Hydrol 333:385–399CrossRefGoogle Scholar
  19. 19.
    Depetris PJ, Pasquini AI (2008) Riverine flow and lake level variability in southern South America. EOS Trans Am Geophys Union 89(28):254–255CrossRefGoogle Scholar
  20. 20.
    Drever JI (1997) The geochemistry of natural waters, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  21. 21.
    Gaillardet J, Viers J, Dupré B (2005) Trace elements in river waters. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 225–272Google Scholar
  22. 22.
    Potter PE, Maynard JB, Depetris PJ (2005) Mud & mudstones. Introduction and overview. Springer, HeidelbergGoogle Scholar
  23. 23.
    Bland W, Rolls D (1998) Weathering. An introduction to the scientific principles. Arnold, LondonGoogle Scholar
  24. 24.
    Depetris PJ, Pasquini AI, Lecomte KL (2014) Weathering and the riverine denudation of continents. Springer, DordrechtCrossRefGoogle Scholar
  25. 25.
    Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924CrossRefGoogle Scholar
  26. 26.
    Depetris PJ, Pasquini AI (2007) The geochemistry of the Paraná River: an overview. In: Iriondo MH, Paggi JC, Parma MJ (eds) The middle Paraná River: limnology of a subtropical wetland. Springer, BerlinGoogle Scholar
  27. 27.
    Harnois L (1988) The CIW index: a new chemical index of weathering. Sediment Geol 55(3–4):319–322CrossRefGoogle Scholar
  28. 28.
    Hamadan J, Burnham CP (1996) The contribution of nutrients from parent material in three deeply weathered soils of peninsula Malaysia. Geoderma 74:219–233CrossRefGoogle Scholar
  29. 29.
    Parker A (1970) An index for weathering of silicate rocks. Geol Mag 107:501–505CrossRefGoogle Scholar
  30. 30.
    Babechuk MG, Widdowson M, Kamber BS (2014) Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem Geol 363:56–75CrossRefGoogle Scholar
  31. 31.
    Tardy Y (1971) Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chem Geol 7:253–271CrossRefGoogle Scholar
  32. 32.
    Boeglin JL, Probst JL (1998) Physical and chemical weathering rates and CO2 consumption in tropical lateritic environment: the upper Niger basin. Chem Geol 148:137–156CrossRefGoogle Scholar
  33. 33.
    Faure G (1991) Principles and applications of geochemistry. Prentice Hall, Upper Saddle RiverGoogle Scholar
  34. 34.
    Krauskopf KB, Bird DK (1995) Introduction to geochemistry, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  35. 35.
    White AF (2005) Natural weathering rates of silicate rocks. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 133–168Google Scholar
  36. 36.
    Velde B (1992) Introduction to clay minerals. Chemistry, origins, uses and environmental significance. Springer, HeidelbergCrossRefGoogle Scholar
  37. 37.
    Meunier A (2005) Clays. Springer, HeidelbergGoogle Scholar
  38. 38.
    Sayler FL, Mangelsdorf PC (1979) Cation-exchange characteristics of Amazon River suspended sediment and its reaction with seawater. Geochim Cosmochim Acta 43(5):767–779CrossRefGoogle Scholar
  39. 39.
    Nordstrom DK (2005) Modeling low-temperature geochemical processes. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 37–72Google Scholar
  40. 40.
    Dali-yousef M, Ouddane B, Derriche Z (2006) Adsorption of zinc on natural sediments of Tafna River (Algeria). J Hazard Mater 137(3):1263–1270CrossRefGoogle Scholar
  41. 41.
    Ito A, Otake T, Shin K-C, Ariffin KS, Yeoh F-Y, Sato T (2017) Geochemical signatures and processes in a stream contaminated by heavy mineral processing near Ipoh city, Malaysia. Appl Geochem 82:89–101CrossRefGoogle Scholar
  42. 42.
    Szynkiewicz A, Borrok DM (2016) Isotope variations of dissolved Zn in the Rio Grande watershed, USA: the role of adsorption on Zn isotope composition. Earth Planet Sci Lett 433:293–302CrossRefGoogle Scholar
  43. 43.
    Hood DW (ed) (1970) Symposium on organic matter in natural waters. University of Alaska, Institute of Marine Sciences, CollegeGoogle Scholar
  44. 44.
    Bolin B, Degens ET, Kempe S, Ketner P (1979) The global carbon cycle. SCOPE 13. Wiley, ChichesterGoogle Scholar
  45. 45.
    Garrels RM, Mackenzie FT, Hunt C (1975) Chemical cycles and the global environment. Kaufmann, Los AltosGoogle Scholar
  46. 46.
    Ludwig W, Probst JL, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Glob Biogeochem Cycles 10:23–41CrossRefGoogle Scholar
  47. 47.
    Perdue EM, Ritchie JD (2005) Dissolved organic matter in freshwaters. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 273–318Google Scholar
  48. 48.
    Depetris PJ, Kempe S (1993) Carbon dynamics and sources in the Paraná River. Limnol Oceanogr 38(2):382–395CrossRefGoogle Scholar
  49. 49.
  50. 50.
    Ittekkot V, Laane RWPM (1991) Fate of riverine particulate matter. In: Degens ET et al (eds) Biogeochemistry of major world rivers. SCOPE, vol 42. Wiley, New York, pp 233–243Google Scholar
  51. 51.
    Onstad GD, Canfield DE, Quay PD, Hedges JI (2000) Sources of particulate organic matter in rivers from continental USA: lignin phenol and stable carbon isotope compositions. Geochim Cosmochim Acta 64(2):3539–3546CrossRefGoogle Scholar
  52. 52.
    Boyer EW, Howarth R (eds) (2002) The nitrogen cycle at regional to global scales. Springer, HeidelbergGoogle Scholar
  53. 53.
    Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hikk MN (ed) The sea, vol 2. Wiley, New YorkGoogle Scholar
  54. 54.
    Díaz M, Pedrozo F, Reynolds C, Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37:17–27CrossRefGoogle Scholar
  55. 55.
    Depetris PJ, Gaiero DM, Probst JL, Hartmann J, Kempe S (2005) Biogeochemical output and typology of rivers draining Patagonia’s Atlantic seaboard. J Coast Res 21(4):835–844CrossRefGoogle Scholar
  56. 56.
    White WM (2017) Trace elements. In: White WM (ed) Encyclopedia of geochemistry. Springer, Heidelberg, pp 1–2Google Scholar
  57. 57.
    Pasquini AI, Depetris PJ (2012) Hydrochemical considerations and heavy metal variability in the middle Paraná River. Environ Earth Sci 65:525–534CrossRefGoogle Scholar
  58. 58.
    Canil D (2017) Transition elements. In: White WM (ed) Encyclopedia of geochemistry. Springer, Heidelberg, pp 1–4Google Scholar
  59. 59.
    McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, Washington, DC, pp 169–200CrossRefGoogle Scholar
  60. 60.
    Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New YorkGoogle Scholar
  61. 61.
    White WM (2015) Isotope geochemistry. Wiley-Blackwell, New YorkGoogle Scholar
  62. 62.
    Kendall C, Doctor DH (2005) Stable isotope applications in hydrologic studies. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 319–364Google Scholar
  63. 63.
    Panarello HO, Dapeña C (2009) Large scale meteorological phenomena, ENSO and ITCZ, define the Paraná River isotope composition. J Hydrol 365:105–112CrossRefGoogle Scholar
  64. 64.
    Pasquini AI, Depetris PJ (2010) ENSO-triggered exceptional flooding in the Paraná River: where is the excess water coming from? J Hydrol 383:186–194CrossRefGoogle Scholar
  65. 65.
    Mook WG (2005) Introduction to isotope hydrology: stable and radioactive isotopes of hydrogen, carbon, and oxygen. CRC Press, New YorkGoogle Scholar
  66. 66.
    Brunet F, Gaiero DM, Probst JL, Depetris PJ, Gauthier Lafaye F, Stille P (2005) δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrol Process 19:3321–3344CrossRefGoogle Scholar
  67. 67.
    Kendall C (1998) Tracing nitrogen and cycling in catchments. In: Kendall C, McDonell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576CrossRefGoogle Scholar
  68. 68.
    Hoefs J (2009) Stable isotope geochemistry. Springer, Berlin/HeidelbergGoogle Scholar
  69. 69.
    Tang YJ, Hong-Fu Z, Ji-Feng Y (2007) Review of the lithium isotope system as a geochemical tracer. Int Geol Rev 49:374–388CrossRefGoogle Scholar
  70. 70.
    Millot R, Vigier N, Gaillardet J (2010) Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim Cosmochim Acta 74:3897–3912CrossRefGoogle Scholar
  71. 71.
    Burnett WC, Dulaiova H (2006) Radon as a tracer of submarine groundwater discharge into a boat basin in Donnalucata, Sicily. Cont Shelf Res 26(7):862–873CrossRefGoogle Scholar
  72. 72.
    Kwon EY, Kim G, Primeau F, Moore WS, Cho HM, DeVries T, Sarmiento JL, Charette MA, Cho YK (2014) Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys Res Lett 41. Scholar
  73. 73.
    Moore WS (2003) Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66:75–93CrossRefGoogle Scholar
  74. 74.
    Schlüter M (2002) Fluid flow in continental margin sediments. In: Wefer G, Billet D, Hebbeln D, Jorgensen BB, Schlüter M, Van Weering T (eds) Ocean margin system. Springer, Heidelberg, pp 205–217CrossRefGoogle Scholar
  75. 75.
    Blum JD, Erel Y (2005) Radiogenic isotopes in weathering and hydrology. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 365–392Google Scholar
  76. 76.
    Henry F, Probst JL, Thouron D, Depetris PJ, Garçon V (1996) Nd-Sr isotopic compositions of dissolved and particulate material transported by the Paraná and Uruguay rivers during high (December 1993) and low (September 1994) water periods. Sci Géol Bull 49:89–100Google Scholar
  77. 77.
    Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090CrossRefGoogle Scholar
  78. 78.
    Gibbs RJ (1992) A reply to the comment of Eilers et al. Limnol Oceanogr 37(6):1338–1339CrossRefGoogle Scholar
  79. 79.
    Depetris PJ (1980) Hydrochemical aspects of the Negro River, Patagonia, Argentina. Earth Surf Proc 5:181–186CrossRefGoogle Scholar
  80. 80.
    Meybeck M (2005) Global occurrence of major elements in rivers. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 207–223Google Scholar
  81. 81.
  82. 82.

Books and Reviews

  1. Albarède F (2003) Geochemistry. An introduction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Allen PA (1997) Earth surface processes. Blackwell Science, OxfordCrossRefGoogle Scholar
  3. Barceló D, Kostianoy AG (eds) (1980) The handbook of environmental chemistry. Springer, HeidelbergGoogle Scholar
  4. Berkowitz B, Dror I, Yaron B (2014) Contaminant geochemistry. Springer, HeidelbergCrossRefGoogle Scholar
  5. Boyd CE (2015) Water quality. Springer, HeidelbergCrossRefGoogle Scholar
  6. Christensen ER, Li A (2014) Physical and chemical processes in the aquatic environment. Wiley, New YorkGoogle Scholar
  7. Clark I (2015) Groundwater geochemistry and isotopes. CRC Press, New YorkCrossRefGoogle Scholar
  8. Killops SD, Killops VJ (1993) An introduction to organic geochemistry. Longman S & T, Burnt MillGoogle Scholar
  9. Krauskopf KB, Bird DK (1995) Introduction to geochemistry, 3rd edn. McGraw-Hill International Editions, New YorkGoogle Scholar
  10. Merkel BJ, Nordstrom DK, Planer-Friedrich B (eds) (2008) Groundwater geochemistry. Springer, HeidelbergGoogle Scholar
  11. Osadchyy V, Nabyvanets B, Linnik P, Osadcha N, Nabyvanets Y (2016) Processes determining surface water chemistry. Springer, HeidelbergCrossRefGoogle Scholar
  12. Otonello G (1997) Principles of geochemistry. Columbia University Press, New YorkGoogle Scholar
  13. Stumm W (1992) Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems. Wiley, New YorkGoogle Scholar
  14. Van Loon G, Duffy SJ (2005) Environmental chemistry: a global perspective. Oxford University Press, OxfordGoogle Scholar
  15. White WM (2013) Geochemistry. Wiley-Blackwell, New YorkGoogle Scholar
  16. White WM (2015) Isotope geochemistry. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Academia Nacional de CienciasCórdobaArgentina

Section editors and affiliations

  • James LaMoreaux
    • 1
  1. 1.P.E. LaMoreaux & Associates, Inc.TuscaloosaUSA

Personalised recommendations