Marine Life Associated with Offshore Drilling, Pipelines, and Platforms

  • Martin Hovland
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Cold seep

A location on the seafloor where natural fluids (gas and liquids) seep upward from the substratum, into the overlying water column.

Cold-water coral reef

A mounded natural structure on the seafloor consisting of live animals and dead remains and sediments. The mound is partly constructed by colonizing corals that are not dependent on sunlight (i.e., ahermatypic corals) such as the most common species: Lophelia pertusa.

Fish sighting

The underwater visual detection (recording) of fish (here, larger than 0.5 m in length) using submersible vehicles with lights and cameras, such as ROVs.

Iceberg ploughmark

Up to 100 m wide and many kilometer long furrows in the seafloor, produced by the action of drifting grounded icebergs. Off Mid-and Northern-Norway and several other places such (relict) furrows remain from the last glaciation.


The Offshore Hydrocarbon Industry (OHI) searches for natural accumulations (reservoirs) of oil and gas (hydrocarbons) and develops the...


  1. 1.
    Martin TR, Olsen KR, Cahill MM (2010) Artificial reefs – an important tool for mitigation and restoration. Ocean News Technol 16(4):28–29Google Scholar
  2. 2.
    Maurer BA, McGill BJ (2004) Neutral and non-neutral macroecology. Basic Appl Ecol 5:413–422CrossRefGoogle Scholar
  3. 3.
    Humphris SE, Zierenberg RA, Mullineaux LS, Thomsen RE (eds) (1995) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. Geophysical monograph 91American Geophysical Union, Washington, DC, 510 ppGoogle Scholar
  4. 4.
    Etter RJ, Rex MA(1990) Population differentiation decrease with depth in deep-sea gastropods. Deep-Sea Res 37:1251–1261CrossRefGoogle Scholar
  5. 5.
    Rex MA (1983) Geographic patterns of species diversity in the deep-sea benthos. In: Rowe GT (ed) The sea. Wiley, New YorkGoogle Scholar
  6. 6.
    Piepenburg I et al (2001) In: Schãfer S et al (eds) The northern north Atlantic – a changing environment. Springer, BerlinGoogle Scholar
  7. 7.
    Schäfer P, Ritzrau W, Schlüter M, Thiede J (2001) The northern north Atlantic – a changing environment. Springer, Berlin, 500 ppCrossRefGoogle Scholar
  8. 8.
    Judd AG, Hovland M (2007) Submarine fluid flow, the impact on geology, biology, and the marine environment. Cambridge University Press, Cambridge, 475 ppCrossRefGoogle Scholar
  9. 9.
    Suess E (2010) Marine cold seeps. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, 1. Springer, Berlin, pp 187–203. (Part 3)Google Scholar
  10. 10.
    Hovland M, Judd AG (1988) Seabed Pockmarks and Seepages. Impact on geology, biology and the marine environment. Graham & Trotman, London, 293 ppGoogle Scholar
  11. 11.
    Hovland M, Thomsen E (1989) Hydrocarbon-based communities in the North Sea? Sarsia 74:29–42CrossRefGoogle Scholar
  12. 12.
    Hovland M (2002) On the self-sealing nature of marine seeps. Cont Shelf Res 22:2387–2394CrossRefGoogle Scholar
  13. 13.
    Wegener G, Shovitri M, Knittel K, Niemann H, Hovland M, Boetius A (2008) Biogeochemical processes and microbial diversity of the ullfaks and Tommeliten methane seeps (northern North Sea). Biogeosciences 5(4):1127–1144CrossRefGoogle Scholar
  14. 14.
    Hovland M (2007) Discovery of prolific natural methane seeps at Gullfaks, northern North Sea. Geo-Mar Lett. s00367-007-0070-6
  15. 15.
    Seibel BA, Dierssen HM (2009) Animal function at the heart (and gut) of oceanography. Science 323:343–344CrossRefGoogle Scholar
  16. 16.
    Moore CJ (1999) Seeps give a peek into plumbing, explorer. Am Assoc Pet Geol Bull 99:22–23Google Scholar
  17. 17.
    Dimitrov LL (2002) Mud volcanoes – the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59:49–76CrossRefGoogle Scholar
  18. 18.
    Dupré S, Woodside J, Klaucke I, Mascle J, Foucher J-P (2010) Widespread active seepage on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Mar Geol 275:1–19CrossRefGoogle Scholar
  19. 19.
    Vogt PR, Crane K, Pfirman S, Sundvor E, Cherkis N, Flemming H, Nishimura C, Shor A (1991) SeaMarc II sidescan sonar imagery and swath bathymetry in the Nordic basin. EOS Trans 72:486CrossRefGoogle Scholar
  20. 20.
    Hovland M, Hill A, Stokes D (1997) The structure and geomor-phology of the Dashgil mud volcano. Azerbaijan Geomorphol 21:1–15CrossRefGoogle Scholar
  21. 21.
    King LH, MacLean B (1970) Pockmarks on the Scotian shelf. Geol Soc Am Bull 81:3142–3148Google Scholar
  22. 22.
    Cathles LM, Su Z, Chen D (2010) The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Mar Pet Geol 27:82–91CrossRefGoogle Scholar
  23. 23.
    Hovland M, Heggland R, de Vries MH, Tjelta TI (2010) Unit pockmarks and their potential significance for prediction of fluid flow. J Mar Petrol Geol 27:1190–1199CrossRefGoogle Scholar
  24. 24.
    Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M (2010) Biological structures as a source of habit heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31: 21–50CrossRefGoogle Scholar
  25. 25.
    Gunnerus JE (1768) Om nogle Norske coraller. In: Kongelige Norske Videnskabers Selskabs Skrifter, vol 4, pp 38–73Google Scholar
  26. 26.
    Dons C (1944) Norges korallrev. Norsk Vidensk Selsk Trond-heim Forh 16A:37–82Google Scholar
  27. 27.
    Wilson JB (1979) The distribution of the coral Lophelia pertusa (L.) [L. Prolifera (Pallas)] in the north-east Atlantic. J Mar Biol Assoc UK 59:149–164CrossRefGoogle Scholar
  28. 28.
    Wilson JB (1979) “Patch” development of the deep-water coral Lophelia pertusa (L.) on rockall bank. J Mar Biol Assoc UK 59:165–177CrossRefGoogle Scholar
  29. 29.
    Hecker B, Blechschmidt G, Gibson P (1980) Epifaunal zonation and community structure in three Mid- and North Atlantic Canyons. Contract report BLM AA551-CT8-49 prepared by Lamont-Doherty for US Department of InteriorGoogle Scholar
  30. 30.
    Zibrowius H (1980) Les Scle’ractiniaires de la Me’diterrane’e et de l’Atlantique nord-oriental. Memoires de l’Institute Oceanographique 11:247Google Scholar
  31. 31.
    Hovland M (1990) Do carbonate reefs form due to fluid seepage? Terra Nova 2:8–18CrossRefGoogle Scholar
  32. 32.
    Hovland M, Croker PF (1993) Fault-associated seabed mounds in the Porcupine Basin, offshore Ireland. Expanded abstract. In: Proceedings of the 55th EAEG Ann. Mtg., Stavanger, NorwayGoogle Scholar
  33. 33.
    Hovland M, Croker P, Martin M (1994) Fault-associated seabed mounds (carbonate knolls?) off western Ireland and NorthWest Australia. Mar Pet Geol 11:232–246CrossRefGoogle Scholar
  34. 34.
    Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, west Finnmark, northern Norway. In: James NP, Clarke JAD (eds) Cool-water carbonates. Soc Sediment Geol (SEPM), Special Publ 56. SEPM, Tulsa, pp 140–161CrossRefGoogle Scholar
  35. 35.
    Henriet J-P, De Mol B, Pillen S, Vanneste M, Van Rooij D, Versteeg W, Croker PF, Shannon PM, Unninthan V, Bouriak S, Chachkine P (1998) Gas hydrate crystals may help build reefs. Nature 391:648–649. (Porcupine-Belgica Shipboard Party)CrossRefGoogle Scholar
  36. 36.
    Hovland M, Mortensen PB (1999) Norske korallrev og prosesser I havbunnen (Norwegian coral reefs and seabed processes), John Grieg, Bergen, Norway, 167 pp (in Norwegian with English summary)Google Scholar
  37. 37.
    Armstrong CW, van der Hove S (2007) The formation of policy for protection of cold-water coral off the coast of Norway. Internal report, University of TromsøGoogle Scholar
  38. 38.
    Fosså JH, Mortensen PB (1998) Artsmangfoldet på Lophelia-korallrev og metoder for kartlegging og overvåkning. The biodiversity on Lophelia-reefs and methods for mapping and monitoring. Fisken og Havet 17:1–95. (in Norwegian)Google Scholar
  39. 39.
    Willison JHM, Hall J, Gass SE, Kenchington ELR, Butler M, Doherty P (eds) (2001) In: Proceedings of the first international symposium on deep-sea corals, Ecology Action Centre and Nova Scotia Museum. Halifax, CanadaGoogle Scholar
  40. 40.
    Hovland M, Risk M (2003) Do Norwegian deep-water coral reefs rely on seeping fluids? Mar Geol 198:83–96CrossRefGoogle Scholar
  41. 41.
    Jensen S, Neufeld JD, Birkeland N-K, Hovland M, Murrell JC (2008) Insight into the microbial community structure of a deepwater coral reef environment. Deep-Sea Res I 55:1554–1563CrossRefGoogle Scholar
  42. 42.
    Yakimov MM, Cappello S, Crisafi E, Tursi A, Savini A, Corselli C, Scarfi S, Giuliano L (2006) Phylogenic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea. Deep-Sea Res I 53:62–75CrossRefGoogle Scholar
  43. 43.
    Sorokin YuI, Sorokin Yu P (2009) Analysis of plankton in the southern Great Barrier Reef: abundance and roles in throphodynamics. J Mar Biol Assoc UK 89:235–241CrossRefGoogle Scholar
  44. 44.
    Neulinger SC, Gärtner A, Järnegren J, Ludvigsen M, Lochte K, Dullo W-C (2008) Tissue-associated “Candidatus Mycoplasma corallicola” and filamentous bacteria on the cold-water coral Lophelia pertusa (Schleractinia). Appl Environ Microbiol 75:1437–1444CrossRefGoogle Scholar
  45. 45.
    Tavormina PL, Ussler W, Orphan VJ (2008) Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. Appl Environ Microbiol 74:3985–3995CrossRefGoogle Scholar
  46. 46.
    Penn K, Wu D, Eisen JA, Ward N (2006) Characteristics of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl Environ Microbiol 72:1680–1683CrossRefGoogle Scholar
  47. 47.
    Hovland M (2008) Deep-water coral reefs – unique biodiversity hot-spots. Springer Praxis, Chichester, 278 ppGoogle Scholar
  48. 48.
    Costello MJ, McRea M, Freiwald A, Lundälv T, Jonsson L, Bett BJ, Van Weering TCE, de Haas H, Roberts MJ, Allen D (2005) Role of cold-water coral Lophelia pertusa coral reefs as fish habitat in the North East Atlantic. In: Freiwald A, Roberts M (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 771–805CrossRefGoogle Scholar
  49. 49.
    Furevik D, Nøttestad L, Fosså JH, Husebø A, Jørgensen S (1999) Fiskefordeling i og utenfor korallområder på Søregga. Fisken og Havet no 15, 33 ppGoogle Scholar
  50. 50.
    Husebø A, Nøttestad L, Fosså JH, Furevik D, Jørgensen SB (2002) Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia 471:91–99CrossRefGoogle Scholar
  51. 51.
    Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547CrossRefGoogle Scholar
  52. 52.
    Turley C, Blackford J, Widdicombe S, Lowe D, Nightingale PD, Rees AP (2006) Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. In: Schnellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, pp 65–70Google Scholar
  53. 53.
    Turley CM, Roberts JM, Guinotte JM (2007) Corals in deep-water: will the unseen hand of ocean acidification destroy cold-water ecosystems? Coral Reefs. s00338-007-0247-5
  54. 54.
    Gass SE, Roberts JM (2006) The occurrence of the cold-water Lophelia pertusa (Scleractinian) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Mar Pollut Bull 52:549–559CrossRefGoogle Scholar
  55. 55.
    Roberts JM, Long D, Wilson JB, Mortensen PB, Gage JD (2003) The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the north-east Atlantic margin: are they related? Mar Pollut Bull 46:7–20CrossRefGoogle Scholar
  56. 56.
    Koslow JA, Gowlett-Holmes K, Lowry JK, O’Hara T, Poore GCB, Willimams A (2001) Seamount benthic microfauna off southern Tasmania: community structure and impacts of trawling. Mar Ecol Prog Ser 213:111–125CrossRefGoogle Scholar
  57. 57.
    Fosså JH, Mortensen PB, Furevik DM (2000) Lophelia-korallrev langs norskekysten. Forekomst og tilstand. Lophelia coral reefs along the Norwegian coast. Occurrence and conditions. Fisken og havet, 2, 94 pp (in Norwegian)Google Scholar
  58. 58.
    Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406CrossRefGoogle Scholar
  59. 59.
    Mortensen PB, Fosså JH (2006) Species dieversity and spatial distribution of invertebrates on Lophelia reefs in Norway. In: Proceedings of the 10th international coral reef symposium. Okinawa, Japan, pp 1849–1868Google Scholar
  60. 60.
    Hall-Spencer J, Allain V, Fosså JH (2002) Trawling damage to Northeast Atlantic ancient coral reefs. Proc R Soc Lond Ser B Biol Sci 269:507–511CrossRefGoogle Scholar
  61. 61.
    Myhrvold A, Hovland M, Nøland S-A (2004) Baseline and environmental monitoring in deep water – a new approach. In: Seventh international SPE conference on health, safety, and environment, Calgary, 29–31 Mar 2004. Paper no. SPE 86776Google Scholar
  62. 62.
    Etiope G, Feyzullayev A, Baciu CL (2009) Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Mar Pet Geol 26:333–344CrossRefGoogle Scholar
  63. 63.
    Mikkelsen N, Erlenkauser H, Killingley JS, Berger WH (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 5:163–171Google Scholar
  64. 64.
    Mortensen PB, Rapp HT (1998) Oxygen- and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L) (Anthozoa: Scleractinia): implications for determination of linear extention rates. Sarsia 83: 433–446CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Martin Hovland
    • 1
    • 2
  1. 1.Centre for GeobiologyUniversity of BergenBergenNorway
  2. 2.Statoil ASAStavangerNorway

Personalised recommendations