Skip to main content

Marine Life Associated with Offshore Drilling, Pipelines, and Platforms

  • Reference work entry
  • First Online:
Environmental Geology
  • 1131 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC, 2012

Glossary

Cold seep:

A location on the seafloor where natural fluids (gas and liquids) seep upward from the substratum, into the overlying water column.

Cold-water coral reef:

A mounded natural structure on the seafloor consisting of live animals and dead remains and sediments. The mound is partly constructed by colonizing corals that are not dependent on sunlight (i.e., ahermatypic corals) such as the most common species: Lophelia pertusa.

Fish sighting:

The underwater visual detection (recording) of fish (here, larger than 0.5 m in length) using submersible vehicles with lights and cameras, such as ROVs.

Iceberg ploughmark:

Up to 100 m wide and many kilometer long furrows in the seafloor, produced by the action of drifting grounded icebergs. Off Mid-and Northern-Norway and several other places such (relict) furrows remain from the last glaciation.

OHI:

The Offshore Hydrocarbon Industry (OHI) searches for natural accumulations (reservoirs) of oil and gas (hydrocarbons) and develops the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Martin TR, Olsen KR, Cahill MM (2010) Artificial reefs – an important tool for mitigation and restoration. Ocean News Technol 16(4):28–29

    Google Scholar 

  2. Maurer BA, McGill BJ (2004) Neutral and non-neutral macroecology. Basic Appl Ecol 5:413–422

    Article  Google Scholar 

  3. Humphris SE, Zierenberg RA, Mullineaux LS, Thomsen RE (eds) (1995) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. Geophysical monograph 91American Geophysical Union, Washington, DC, 510 pp

    Google Scholar 

  4. Etter RJ, Rex MA(1990) Population differentiation decrease with depth in deep-sea gastropods. Deep-Sea Res 37:1251–1261

    Article  Google Scholar 

  5. Rex MA (1983) Geographic patterns of species diversity in the deep-sea benthos. In: Rowe GT (ed) The sea. Wiley, New York

    Google Scholar 

  6. Piepenburg I et al (2001) In: Schãfer S et al (eds) The northern north Atlantic – a changing environment. Springer, Berlin

    Google Scholar 

  7. Schäfer P, Ritzrau W, Schlüter M, Thiede J (2001) The northern north Atlantic – a changing environment. Springer, Berlin, 500 pp

    Book  Google Scholar 

  8. Judd AG, Hovland M (2007) Submarine fluid flow, the impact on geology, biology, and the marine environment. Cambridge University Press, Cambridge, 475 pp

    Book  Google Scholar 

  9. Suess E (2010) Marine cold seeps. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology, 1. Springer, Berlin, pp 187–203. (Part 3)

    Google Scholar 

  10. Hovland M, Judd AG (1988) Seabed Pockmarks and Seepages. Impact on geology, biology and the marine environment. Graham & Trotman, London, 293 pp

    Google Scholar 

  11. Hovland M, Thomsen E (1989) Hydrocarbon-based communities in the North Sea? Sarsia 74:29–42

    Article  Google Scholar 

  12. Hovland M (2002) On the self-sealing nature of marine seeps. Cont Shelf Res 22:2387–2394

    Article  Google Scholar 

  13. Wegener G, Shovitri M, Knittel K, Niemann H, Hovland M, Boetius A (2008) Biogeochemical processes and microbial diversity of the ullfaks and Tommeliten methane seeps (northern North Sea). Biogeosciences 5(4):1127–1144

    Article  Google Scholar 

  14. Hovland M (2007) Discovery of prolific natural methane seeps at Gullfaks, northern North Sea. Geo-Mar Lett. https://doi.org/10.1007/ s00367-007-0070-6

  15. Seibel BA, Dierssen HM (2009) Animal function at the heart (and gut) of oceanography. Science 323:343–344

    Article  Google Scholar 

  16. Moore CJ (1999) Seeps give a peek into plumbing, explorer. Am Assoc Pet Geol Bull 99:22–23

    Google Scholar 

  17. Dimitrov LL (2002) Mud volcanoes – the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59:49–76

    Article  Google Scholar 

  18. Dupré S, Woodside J, Klaucke I, Mascle J, Foucher J-P (2010) Widespread active seepage on the Nile Deep Sea Fan (offshore Egypt) revealed by high-definition geophysical imagery. Mar Geol 275:1–19

    Article  Google Scholar 

  19. Vogt PR, Crane K, Pfirman S, Sundvor E, Cherkis N, Flemming H, Nishimura C, Shor A (1991) SeaMarc II sidescan sonar imagery and swath bathymetry in the Nordic basin. EOS Trans 72:486

    Article  Google Scholar 

  20. Hovland M, Hill A, Stokes D (1997) The structure and geomor-phology of the Dashgil mud volcano. Azerbaijan Geomorphol 21:1–15

    Article  Google Scholar 

  21. King LH, MacLean B (1970) Pockmarks on the Scotian shelf. Geol Soc Am Bull 81:3142–3148

    Google Scholar 

  22. Cathles LM, Su Z, Chen D (2010) The physics of gas chimney and pockmark formation, with implications for assessment of seafloor hazards and gas sequestration. Mar Pet Geol 27:82–91

    Article  Google Scholar 

  23. Hovland M, Heggland R, de Vries MH, Tjelta TI (2010) Unit pockmarks and their potential significance for prediction of fluid flow. J Mar Petrol Geol 27:1190–1199

    Article  Google Scholar 

  24. Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M (2010) Biological structures as a source of habit heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31: 21–50

    Article  Google Scholar 

  25. Gunnerus JE (1768) Om nogle Norske coraller. In: Kongelige Norske Videnskabers Selskabs Skrifter, vol 4, pp 38–73

    Google Scholar 

  26. Dons C (1944) Norges korallrev. Norsk Vidensk Selsk Trond-heim Forh 16A:37–82

    Google Scholar 

  27. Wilson JB (1979) The distribution of the coral Lophelia pertusa (L.) [L. Prolifera (Pallas)] in the north-east Atlantic. J Mar Biol Assoc UK 59:149–164

    Article  Google Scholar 

  28. Wilson JB (1979) “Patch” development of the deep-water coral Lophelia pertusa (L.) on rockall bank. J Mar Biol Assoc UK 59:165–177

    Article  Google Scholar 

  29. Hecker B, Blechschmidt G, Gibson P (1980) Epifaunal zonation and community structure in three Mid- and North Atlantic Canyons. Contract report BLM AA551-CT8-49 prepared by Lamont-Doherty for US Department of Interior

    Google Scholar 

  30. Zibrowius H (1980) Les Scle’ractiniaires de la Me’diterrane’e et de l’Atlantique nord-oriental. Memoires de l’Institute Oceanographique 11:247

    Google Scholar 

  31. Hovland M (1990) Do carbonate reefs form due to fluid seepage? Terra Nova 2:8–18

    Article  Google Scholar 

  32. Hovland M, Croker PF (1993) Fault-associated seabed mounds in the Porcupine Basin, offshore Ireland. Expanded abstract. In: Proceedings of the 55th EAEG Ann. Mtg., Stavanger, Norway

    Google Scholar 

  33. Hovland M, Croker P, Martin M (1994) Fault-associated seabed mounds (carbonate knolls?) off western Ireland and NorthWest Australia. Mar Pet Geol 11:232–246

    Article  Google Scholar 

  34. Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, west Finnmark, northern Norway. In: James NP, Clarke JAD (eds) Cool-water carbonates. Soc Sediment Geol (SEPM), Special Publ 56. SEPM, Tulsa, pp 140–161

    Chapter  Google Scholar 

  35. Henriet J-P, De Mol B, Pillen S, Vanneste M, Van Rooij D, Versteeg W, Croker PF, Shannon PM, Unninthan V, Bouriak S, Chachkine P (1998) Gas hydrate crystals may help build reefs. Nature 391:648–649. (Porcupine-Belgica Shipboard Party)

    Article  Google Scholar 

  36. Hovland M, Mortensen PB (1999) Norske korallrev og prosesser I havbunnen (Norwegian coral reefs and seabed processes), John Grieg, Bergen, Norway, 167 pp (in Norwegian with English summary)

    Google Scholar 

  37. Armstrong CW, van der Hove S (2007) The formation of policy for protection of cold-water coral off the coast of Norway. Internal report, University of Tromsø

    Google Scholar 

  38. Fosså JH, Mortensen PB (1998) Artsmangfoldet på Lophelia-korallrev og metoder for kartlegging og overvåkning. The biodiversity on Lophelia-reefs and methods for mapping and monitoring. Fisken og Havet 17:1–95. (in Norwegian)

    Google Scholar 

  39. Willison JHM, Hall J, Gass SE, Kenchington ELR, Butler M, Doherty P (eds) (2001) In: Proceedings of the first international symposium on deep-sea corals, Ecology Action Centre and Nova Scotia Museum. Halifax, Canada

    Google Scholar 

  40. Hovland M, Risk M (2003) Do Norwegian deep-water coral reefs rely on seeping fluids? Mar Geol 198:83–96

    Article  Google Scholar 

  41. Jensen S, Neufeld JD, Birkeland N-K, Hovland M, Murrell JC (2008) Insight into the microbial community structure of a deepwater coral reef environment. Deep-Sea Res I 55:1554–1563

    Article  Google Scholar 

  42. Yakimov MM, Cappello S, Crisafi E, Tursi A, Savini A, Corselli C, Scarfi S, Giuliano L (2006) Phylogenic survey of metabolically active microbial communities associated with the deep-sea coral Lophelia pertusa from the Apulian plateau, Central Mediterranean Sea. Deep-Sea Res I 53:62–75

    Article  Google Scholar 

  43. Sorokin YuI, Sorokin Yu P (2009) Analysis of plankton in the southern Great Barrier Reef: abundance and roles in throphodynamics. J Mar Biol Assoc UK 89:235–241

    Article  Google Scholar 

  44. Neulinger SC, Gärtner A, Järnegren J, Ludvigsen M, Lochte K, Dullo W-C (2008) Tissue-associated “Candidatus Mycoplasma corallicola” and filamentous bacteria on the cold-water coral Lophelia pertusa (Schleractinia). Appl Environ Microbiol 75:1437–1444

    Article  Google Scholar 

  45. Tavormina PL, Ussler W, Orphan VJ (2008) Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. Appl Environ Microbiol 74:3985–3995

    Article  Google Scholar 

  46. Penn K, Wu D, Eisen JA, Ward N (2006) Characteristics of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl Environ Microbiol 72:1680–1683

    Article  Google Scholar 

  47. Hovland M (2008) Deep-water coral reefs – unique biodiversity hot-spots. Springer Praxis, Chichester, 278 pp

    Google Scholar 

  48. Costello MJ, McRea M, Freiwald A, Lundälv T, Jonsson L, Bett BJ, Van Weering TCE, de Haas H, Roberts MJ, Allen D (2005) Role of cold-water coral Lophelia pertusa coral reefs as fish habitat in the North East Atlantic. In: Freiwald A, Roberts M (eds) Cold-water corals and ecosystems. Springer, Heidelberg, pp 771–805

    Chapter  Google Scholar 

  49. Furevik D, Nøttestad L, Fosså JH, Husebø A, Jørgensen S (1999) Fiskefordeling i og utenfor korallområder på Søregga. Fisken og Havet no 15, 33 pp

    Google Scholar 

  50. Husebø A, Nøttestad L, Fosså JH, Furevik D, Jørgensen SB (2002) Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia 471:91–99

    Article  Google Scholar 

  51. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  Google Scholar 

  52. Turley C, Blackford J, Widdicombe S, Lowe D, Nightingale PD, Rees AP (2006) Reviewing the impact of increased atmospheric CO2 on oceanic pH and the marine ecosystem. In: Schnellnhuber HJ, Cramer W, Nakicenovic N, Wigley T, Yohe G (eds) Avoiding dangerous climate change. Cambridge University Press, Cambridge, pp 65–70

    Google Scholar 

  53. Turley CM, Roberts JM, Guinotte JM (2007) Corals in deep-water: will the unseen hand of ocean acidification destroy cold-water ecosystems? Coral Reefs. https://doi.org/10.1007/ s00338-007-0247-5

  54. Gass SE, Roberts JM (2006) The occurrence of the cold-water Lophelia pertusa (Scleractinian) on oil and gas platforms in the North Sea: colony growth, recruitment and environmental controls on distribution. Mar Pollut Bull 52:549–559

    Article  Google Scholar 

  55. Roberts JM, Long D, Wilson JB, Mortensen PB, Gage JD (2003) The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the north-east Atlantic margin: are they related? Mar Pollut Bull 46:7–20

    Article  Google Scholar 

  56. Koslow JA, Gowlett-Holmes K, Lowry JK, O’Hara T, Poore GCB, Willimams A (2001) Seamount benthic microfauna off southern Tasmania: community structure and impacts of trawling. Mar Ecol Prog Ser 213:111–125

    Article  Google Scholar 

  57. Fosså JH, Mortensen PB, Furevik DM (2000) Lophelia-korallrev langs norskekysten. Forekomst og tilstand. Lophelia coral reefs along the Norwegian coast. Occurrence and conditions. Fisken og havet, 2, 94 pp (in Norwegian)

    Google Scholar 

  58. Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int Rev Hydrobiol 84:315–406

    Article  Google Scholar 

  59. Mortensen PB, Fosså JH (2006) Species dieversity and spatial distribution of invertebrates on Lophelia reefs in Norway. In: Proceedings of the 10th international coral reef symposium. Okinawa, Japan, pp 1849–1868

    Google Scholar 

  60. Hall-Spencer J, Allain V, Fosså JH (2002) Trawling damage to Northeast Atlantic ancient coral reefs. Proc R Soc Lond Ser B Biol Sci 269:507–511

    Article  Google Scholar 

  61. Myhrvold A, Hovland M, Nøland S-A (2004) Baseline and environmental monitoring in deep water – a new approach. In: Seventh international SPE conference on health, safety, and environment, Calgary, 29–31 Mar 2004. Paper no. SPE 86776

    Google Scholar 

  62. Etiope G, Feyzullayev A, Baciu CL (2009) Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Mar Pet Geol 26:333–344

    Article  Google Scholar 

  63. Mikkelsen N, Erlenkauser H, Killingley JS, Berger WH (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 5:163–171

    Google Scholar 

  64. Mortensen PB, Rapp HT (1998) Oxygen- and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L) (Anthozoa: Scleractinia): implications for determination of linear extention rates. Sarsia 83: 433–446

    Article  Google Scholar 

Web Sites

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hovland, M. (2012). Marine Life Associated with Offshore Drilling, Pipelines, and Platforms. In: LaMoreaux, J. (eds) Environmental Geology. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8787-0_478

Download citation

Publish with us

Policies and ethics