Skip to main content

Land Subsidence in Urban Environment

  • Reference work entry
  • First Online:
Environmental Geology
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC, 2012

Glossary

Aquifer unit:

Aquifer unit is a geological formation, part of a formation, or a number of formations that provide water substantially and in an adequate quality for the expected usage.

Aquitard:

Aquitard is a geological formation that although insufficiently in producing water as an aquifer unit does, the volume of water that it allows to be released from storage may provide an adverse environmental impact as subsidence.

Compressibility:

Relates the change in volume, or strain, induced in a soil under an applied stress.

Effective stress:

Represents the stress transmitted to the full-saturated soil skeleton when a force per unit area (total normal stress) is transmitted in a normal direction across the measuring plane.

Hydraulic conductivity:

Hydraulic conductivity is the rate of water that an unit volume of aquifer material may allow through under a unit hydraulic gradient such value is a function of its degree of saturation attaining it maximum at 100% saturation, and is also...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. National Geographic (2010) http://news.nationalgeographic.com/news/2010/06/100601-sinkhole-in-guatemala-2010-world-science/

  2. Craig RF (1987) Soil mechanics. Van Nostrand Reinhold, New York

    Google Scholar 

  3. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, p 604

    Google Scholar 

  4. Rudolph DL, Frind EO (1991) Hydraulic response of highly compressible aquitards during consolidation. Water Resour Res 27(1):17–30

    Article  Google Scholar 

  5. Rivera A, Ledoux E, de Marsily G (1991) Non-linear modelling of groundwater flow and total subsidence in the Mexico City aquifer-aquitard system. In: Land subsidence proceedings of fourth international symposium of land subsidence, 200. International Assocation of Hydrological Sciences, Gentbrugge, pp 45–58

    Google Scholar 

  6. Lambe TW, Whitman RV (1969) Soil mechanics. Wiley, New York

    Google Scholar 

  7. Tóth J (1999) Groundwater as a geological agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14

    Article  Google Scholar 

  8. Ortega GA, Cherry JA, Rudolph DL (1993) Large-scale aquitard consolidation near Mexico City. Ground Water 31(5):708–718

    Article  Google Scholar 

  9. Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico city. J Hydrol 258:1–24

    Article  Google Scholar 

  10. Huizar-Alvarez R, Carrillo-Rivera JJ, Angeles-Serrano G, Hergt T, Cardona A (2004) Chemical response to groundwater extraction southeast of México City. Hydrogeol J 12:436–450

    Article  Google Scholar 

  11. Ortiz-Zamora DC, Ortega-Guerrero MA (2010) Evolution of long-term land subsidence near Mexico City: review, field investigations, and predictive simulations. Water Resour Res 46:W01513. https://doi.org/10.1029/2008WR007398

    Article  Google Scholar 

  12. Ortega GA, Rudolph DL, Cherry JA (1999) Analysis of long term land subsidence near Mexico City: field investigations and predictive modeling. Water Resour Res 35(11):3327–3341

    Article  Google Scholar 

  13. AIC (1995) El Agua y la Ciudad de México. Academia de la Investigación Científica, Academia Nacional de Ingeniería, Academia Nacional de Medicina, National Academy of Sciences (through the National Research Council), p 364

    Google Scholar 

  14. Bouwer H (1978) Groundwater hydrology, series in water resources and environmental engineering. Mc Graw-Hill, Sydney, p 480

    Google Scholar 

  15. Carrillo-Rivera JJ (1998) Monitoring of exploited aquifers resulting in subsidence, example: Mexico City. Studies and reports in hydrology No 57. In: Van Lanen HAJ (ed) Monitoring for groundwater management in (semi-)arid regions. UNESCO, Paris, pp 151–165

    Google Scholar 

Books and Reviews

  • Carrillo N (1947) Influence of artesian wells in the sinking of Mexico City. In: Carrillo VN (ed) Comision Impulsora y Coordinadora de la Investigacion Cientifica, Anuario 47. Secretaria de Hacienda y Credito Publico, Mexico City, pp 7–14, 1969

    Google Scholar 

  • Dassargues A, Schroeder Ch, Li XL (1993) Applying the Lagamine model to compute land subsidence in Shanghai. Bull Eng Geol (IAEG) 47(1):13–26

    Article  Google Scholar 

  • Figueroa GE (1987) Structural stability problems of wells and aquifers. en: Workshop on leaky aquifer mechanics, conference proceedings. Universidad Nacional Auto’noma de México, Instituto de Geofísica, México, pp 53–61

    Google Scholar 

  • Figueroa GE (1989) Mecanismos de producción de grietas inducidos por la explotación del agua subterránea. Academia Mexicana de Ingeniería, Alternativas Tecnológicas 29, México, pp 33–48

    Google Scholar 

  • Juárez-Badillo E (1975) Constitutive relationships for soils. In: Symposium on recent developments in the analysis of soil behaviour and their application to geotechnical structures. University of New South Wales, Kensington, pp 231–257

    Google Scholar 

  • Juárez-Badillo E, Figueroa GE (1984) Stresses and displacements in an aquifer due to seepage forces (one-dimensional case). J Hidrol 73:259–288

    Article  Google Scholar 

  • Gambolati G, Freeze RA (1973) Mathematical simulation of the subsidence of venice, 1, theory. Water Resour Res 9(3): 721–733

    Article  Google Scholar 

  • Helm DC (1976) One-dimensional simulation of aquifer system compaction near Pixley, California, 2, stress-dependent parameters. Water Resour Res 12:375–391

    Article  Google Scholar 

  • Herrera I, Figueroa GE (1969) Integrodifferential equations for systems of leaky aquifers. Water Resour Res 5(4):900–904

    Article  Google Scholar 

  • Herrera I, Rodarte L (1973) Integrodifferential equations for systems of leaky aquifers and implications, the nature of approximate theories. Water Resour Res 9(4):994–1005

    Article  Google Scholar 

  • Herrera IR, Yates R, Henart JP (1982) Estudio de hundimiento y balance de acuíferos subterráneos en la Ciudad de México. In: Proyecto elaborado para el Departamento del Distrito Federal por el Instituto en Investigaciones Aplicadas. Universidad Nacional Autonoma De Mexico, México

    Google Scholar 

  • Hiriart F, Marsal RJ (1969) The subsidence of Mexico City. In: Volumen Nabor Carrillo, Comision impulsora y coordinadora de la investigacion Cientifica, Anuario 47. Secretaria de Hacienda y Credito Publico, Mexico City, pp 109–147

    Google Scholar 

  • Lambe TW, Whitman RV (1969) Soil mechanics. Wiley, New York

    Google Scholar 

  • Neuman SP, Witherspoon PA (1969) Applicability of current theories of flow in leaky aquifers. Water Resour Res 5(4):817–829

    Article  Google Scholar 

  • Neuman SP, Preller C, Narasimhan TN (1982) Adaptive explicit-implicit quasi three-dimensional finete element model of flow and subsidence in multiaquifer systems. Water Resour Res 18(5):1551–1561

    Article  Google Scholar 

  • Stamatakos JA, Connor CB, Martín RH (1997) Quaternary basin evolution and basaltic volcanism of Crater Flat, Nevada, From detailed ground magnetic surveys of the little cones. J Geol 105:319–330

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ortega-Guerrero, M.A., Carrillo-Rivera, J.J. (2012). Land Subsidence in Urban Environment. In: LaMoreaux, J. (eds) Environmental Geology. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8787-0_440

Download citation

Publish with us

Policies and ethics