Land Subsidence in Urban Environment

  • M. Adrián Ortega-Guerrero
  • José Joel Carrillo-Rivera
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Aquifer unit

Aquifer unit is a geological formation, part of a formation, or a number of formations that provide water substantially and in an adequate quality for the expected usage.


Aquitard is a geological formation that although insufficiently in producing water as an aquifer unit does, the volume of water that it allows to be released from storage may provide an adverse environmental impact as subsidence.


Relates the change in volume, or strain, induced in a soil under an applied stress.

Effective stress

Represents the stress transmitted to the full-saturated soil skeleton when a force per unit area (total normal stress) is transmitted in a normal direction across the measuring plane.

Hydraulic conductivity

Hydraulic conductivity is the rate of water that an unit volume of aquifer material may allow through under a unit hydraulic gradient such value is a function of its degree of saturation attaining it maximum at 100% saturation, and is also...


Primary Literature

  1. 1.
  2. 2.
    Craig RF (1987) Soil mechanics. Van Nostrand Reinhold, New YorkGoogle Scholar
  3. 3.
    Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, p 604Google Scholar
  4. 4.
    Rudolph DL, Frind EO (1991) Hydraulic response of highly compressible aquitards during consolidation. Water Resour Res 27(1):17–30CrossRefGoogle Scholar
  5. 5.
    Rivera A, Ledoux E, de Marsily G (1991) Non-linear modelling of groundwater flow and total subsidence in the Mexico City aquifer-aquitard system. In: Land subsidence proceedings of fourth international symposium of land subsidence, 200. International Assocation of Hydrological Sciences, Gentbrugge, pp 45–58Google Scholar
  6. 6.
    Lambe TW, Whitman RV (1969) Soil mechanics. Wiley, New YorkGoogle Scholar
  7. 7.
    Tóth J (1999) Groundwater as a geological agent: an overview of the causes, processes, and manifestations. Hydrogeol J 7:1–14CrossRefGoogle Scholar
  8. 8.
    Ortega GA, Cherry JA, Rudolph DL (1993) Large-scale aquitard consolidation near Mexico City. Ground Water 31(5):708–718CrossRefGoogle Scholar
  9. 9.
    Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico city. J Hydrol 258:1–24CrossRefGoogle Scholar
  10. 10.
    Huizar-Alvarez R, Carrillo-Rivera JJ, Angeles-Serrano G, Hergt T, Cardona A (2004) Chemical response to groundwater extraction southeast of México City. Hydrogeol J 12:436–450CrossRefGoogle Scholar
  11. 11.
    Ortiz-Zamora DC, Ortega-Guerrero MA (2010) Evolution of long-term land subsidence near Mexico City: review, field investigations, and predictive simulations. Water Resour Res 46:W01513. Scholar
  12. 12.
    Ortega GA, Rudolph DL, Cherry JA (1999) Analysis of long term land subsidence near Mexico City: field investigations and predictive modeling. Water Resour Res 35(11):3327–3341CrossRefGoogle Scholar
  13. 13.
    AIC (1995) El Agua y la Ciudad de México. Academia de la Investigación Científica, Academia Nacional de Ingeniería, Academia Nacional de Medicina, National Academy of Sciences (through the National Research Council), p 364Google Scholar
  14. 14.
    Bouwer H (1978) Groundwater hydrology, series in water resources and environmental engineering. Mc Graw-Hill, Sydney, p 480Google Scholar
  15. 15.
    Carrillo-Rivera JJ (1998) Monitoring of exploited aquifers resulting in subsidence, example: Mexico City. Studies and reports in hydrology No 57. In: Van Lanen HAJ (ed) Monitoring for groundwater management in (semi-)arid regions. UNESCO, Paris, pp 151–165Google Scholar

Books and Reviews

  1. Carrillo N (1947) Influence of artesian wells in the sinking of Mexico City. In: Carrillo VN (ed) Comision Impulsora y Coordinadora de la Investigacion Cientifica, Anuario 47. Secretaria de Hacienda y Credito Publico, Mexico City, pp 7–14, 1969Google Scholar
  2. Dassargues A, Schroeder Ch, Li XL (1993) Applying the Lagamine model to compute land subsidence in Shanghai. Bull Eng Geol (IAEG) 47(1):13–26CrossRefGoogle Scholar
  3. Figueroa GE (1987) Structural stability problems of wells and aquifers. en: Workshop on leaky aquifer mechanics, conference proceedings. Universidad Nacional Auto’noma de México, Instituto de Geofísica, México, pp 53–61Google Scholar
  4. Figueroa GE (1989) Mecanismos de producción de grietas inducidos por la explotación del agua subterránea. Academia Mexicana de Ingeniería, Alternativas Tecnológicas 29, México, pp 33–48Google Scholar
  5. Juárez-Badillo E (1975) Constitutive relationships for soils. In: Symposium on recent developments in the analysis of soil behaviour and their application to geotechnical structures. University of New South Wales, Kensington, pp 231–257Google Scholar
  6. Juárez-Badillo E, Figueroa GE (1984) Stresses and displacements in an aquifer due to seepage forces (one-dimensional case). J Hidrol 73:259–288CrossRefGoogle Scholar
  7. Gambolati G, Freeze RA (1973) Mathematical simulation of the subsidence of venice, 1, theory. Water Resour Res 9(3): 721–733CrossRefGoogle Scholar
  8. Helm DC (1976) One-dimensional simulation of aquifer system compaction near Pixley, California, 2, stress-dependent parameters. Water Resour Res 12:375–391CrossRefGoogle Scholar
  9. Herrera I, Figueroa GE (1969) Integrodifferential equations for systems of leaky aquifers. Water Resour Res 5(4):900–904CrossRefGoogle Scholar
  10. Herrera I, Rodarte L (1973) Integrodifferential equations for systems of leaky aquifers and implications, the nature of approximate theories. Water Resour Res 9(4):994–1005CrossRefGoogle Scholar
  11. Herrera IR, Yates R, Henart JP (1982) Estudio de hundimiento y balance de acuíferos subterráneos en la Ciudad de México. In: Proyecto elaborado para el Departamento del Distrito Federal por el Instituto en Investigaciones Aplicadas. Universidad Nacional Autonoma De Mexico, MéxicoGoogle Scholar
  12. Hiriart F, Marsal RJ (1969) The subsidence of Mexico City. In: Volumen Nabor Carrillo, Comision impulsora y coordinadora de la investigacion Cientifica, Anuario 47. Secretaria de Hacienda y Credito Publico, Mexico City, pp 109–147Google Scholar
  13. Lambe TW, Whitman RV (1969) Soil mechanics. Wiley, New YorkGoogle Scholar
  14. Neuman SP, Witherspoon PA (1969) Applicability of current theories of flow in leaky aquifers. Water Resour Res 5(4):817–829CrossRefGoogle Scholar
  15. Neuman SP, Preller C, Narasimhan TN (1982) Adaptive explicit-implicit quasi three-dimensional finete element model of flow and subsidence in multiaquifer systems. Water Resour Res 18(5):1551–1561CrossRefGoogle Scholar
  16. Stamatakos JA, Connor CB, Martín RH (1997) Quaternary basin evolution and basaltic volcanism of Crater Flat, Nevada, From detailed ground magnetic surveys of the little cones. J Geol 105:319–330CrossRefGoogle Scholar
  17. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • M. Adrián Ortega-Guerrero
    • 1
  • José Joel Carrillo-Rivera
    • 2
  1. 1.Centro de GeocienciasUNAM JuriquillaQuerétaroMexico
  2. 2.Instituto de GeografíaUNAM CUCoyoacánMexico

Personalised recommendations