Mining and Its Environmental Impacts

  • Jörg Matschullat
  • Jens Gutzmer
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



All life forms.


Removal of something from active status.

Eco-efficiency analysis

Analysis of realizing the concept of creating goods and services with fewer resources and less waste and pollution.


Act of using something (mineral resources) for any purpose.


Process of finding mineral resources for the purpose of mining.


A geological feature in relatively soluble rocks, e.g., limestone, where sinkholes, caves, and similar hollows are formed above and below ground.


The outer rocky shell of planet Earth, comprising the oceanic and continental crust and part of the upper Earth mantle.

Long-term effect

A change that will last or have an influence over a long period of time.


German for “sustainability,” first used in 1713 in Germany.

Open-pit excavation

Process of extracting minerals from surface deposits.


Making raw mineral soils (brownfields) fertile again through bioengineering and...


Primary Literature

  1. 1.
    Schneider J (1998) Environmental impact of marine mining. N Jahrb Geol Paläont Abh 208:397–412CrossRefGoogle Scholar
  2. 2.
    Chamley H (2003) Geosciences, environment and man. In: Chamley H (ed) Developments in earth and environmental sciences, 1. Elsevier, Amsterdam, 527 pGoogle Scholar
  3. 3.
    Ellis D (1989) Environments at risk. Case histories of impact assessment. Springer, Berlin/New York, 329 pCrossRefGoogle Scholar
  4. 4.
    IRMA (2011) Documents. The initiative for responsible mining assurance. Accessed 8 Sept 2011
  5. 5.
    Kausch P, Ruhrmann G (2001) Environmental management. Environmental impact assessment of mining operations. Logabok, Köln, 133 pGoogle Scholar
  6. 6.
    Bednarik RG (1992) Early subterranean chert mining. Artefact 15:11–24Google Scholar
  7. 7.
    Dart RA (1967) The antiquity of mining in Southern Africa. S Afr J Sci 63(6):264–267Google Scholar
  8. 8.
    Dart RA, Beaumont PB (1968) Ratification and retrocession of earlier Swaziland iron ore mining radiocarbon datings. S Afr J Sci 64(6):241–246Google Scholar
  9. 9.
    Matschullat J, Ellminger F, Agdemir N, Cramer S, Liessmann W, Niehoff N (1997) Overbank sediment profiles – evidence of early mining and smelting activities in the Harz mountains, Germany. Appl Geochem 12:105–114CrossRefGoogle Scholar
  10. 10.
    Sparks DL (2005) Toxic metals in the environmental: the role of surfaces. Elements 1(4):193–197CrossRefGoogle Scholar
  11. 11.
    Klappauf L, Linke FA, Brockner W, Heimbruch W, Koerfer S (1990) Early mining and smelting in the Harz region. In: Pernicka E, Wagner GA (eds) Archaeometry, vol 90. Birkhäuser Verlag, Basel, pp 77–86Google Scholar
  12. 12.
    Rebrik BM (1987) Geologie und Bergbau in der Antike. Deutscher Verlag für Grundstoffindustrie, Leipzig, 183 pGoogle Scholar
  13. 13.
    Rosman KJR, Chisholm W, Hong S, Candelone JP, Boutron CF (1997) Lead from Carthagian and Roman Spanish mines isotopi-cally identified in Greenland ice dated from 600 B.C. to 300 A.D. Environ Sci Technol 31:3413–3416CrossRefGoogle Scholar
  14. 14.
    MHN (1997) The mining history network. Accessed 8 Sept 2011
  15. 15.
    Diamond J (2005) Collapse. How societies choose to fail or survive. Penguin, London, 575 pGoogle Scholar
  16. 16.
    Down CG, Stocks J (1977) Environmental impact of mining. Applied Science, London, 380 pGoogle Scholar
  17. 17.
    von Carlowitz HC (1713) Sylvicultura oeconomica. Anweisung zur wilden Baum-Zucht. Reprint of the 1713 ed Leipzig, Braun, revised by Klaus Irmer and Angela Kießling, TU Bergakademie Freiberg and Akademische Buchhandlung, Freiberg 2000, ISBN 3-86012-115-4; Reprint of the 2nd ed from 1732, Verlag Kessel, ISBN: 978-3-941300-19-4Google Scholar
  18. 18.
    Grober U (2010) Die Entdeckung der Nachhaltigkeit. Kulturgeschichte eines Begriffs. Kunstmann Antje GmbH, 300 pGoogle Scholar
  19. 19.
    Plumlee GS, Ziegler TL (2005) The medical geochemistry of dusts, soils and other Earth materials. In: Sherwood Lollar B (ed) Environmental geochemistry. In: Holland HD, Turekian KK (ser eds) Treatise on geochemistry, vol 9, issue 7, pp 263–310Google Scholar
  20. 20.
    PDAC (2009) e3plus – a framework for responsible exploration, 34 p. Accessed 8 Sept 2011
  21. 21.
    Gunn JM (ed) (1995) Restoration and recovery of an industrial region, Environmental management. Springer, New York, 358 pGoogle Scholar
  22. 22.
    Ilgen G, Fiedler HJ (1990) Smelter smoke damage at Freiberg in the 19th century, and its study by Professors Reich (Freiberg) and Stöckhardt (Tharandt) II Explaining the causes of damage by agricultural chemistry methods. Wiss Z TU Dresden 29(6):115–118Google Scholar
  23. 23.
    Last FT, Watling R (1991) Acidic deposition – its nature and impacts. Proc Royal Soc Edinburgh B Biol Sci 97:343Google Scholar
  24. 24.
    Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2005) The geochemistry of acid mine drainage. In: Sherwood Lollar B (ed) Environmental geochemistry. In: Holland HD, Turekian KK (ser eds) Treatise on geochemistry, vol 9, issue 5, pp 149–204CrossRefGoogle Scholar
  25. 25.
    Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167(3921):1121–1123CrossRefGoogle Scholar
  26. 26.
    Knittel U, Klemm W, Greif A (2005) Heavy metal pollution downstream of old mining camps as a result of flood events: an example from the Mulde river system, eastern part of Germany. Terr Atmos Ocean Sci 16(4):919–931CrossRefGoogle Scholar
  27. 27.
    Ridgway J, Flight DMA, Martiny B, Gomez-Caballero A, Macias-Romo C, Greally K (1995) Overbank sediments from central Mexico: an evaluation of their use in regional geochemical mapping and in studies of contamination from modern and historical mining. Appl Geochem 10:97–109CrossRefGoogle Scholar
  28. 28.
    Pernetta JC (1988) Potential impacts of mining on the Fly river, UNEP 99, 191 pGoogle Scholar
  29. 29.
    Hum L, Matschullat J (2003) Gold kann schmutzig sein. Welche längerfristigen Auswirkungen hatte das Unglück bei Baia Mare auf die Theiss? In: Unland G, Herzog P (eds) Der Bergbaubezirk Baia Mare, Rumänien. Eine komplexe Betrachtung der Lagerstätte, des Bergbaus, der Aufbereitung sowie der Umweltfolgen. TU Bergakademie Freiberg, FreibergGoogle Scholar
  30. 30.
    Goudie A (2006) The human impact on the natural environment, 6th edn. Blackwell, Oxford, 357 pGoogle Scholar
  31. 31.
    Deschamps E, Matschullat J (2011) Arsenic: natural and anthropogenic. In: Bundschuh J, Bhattacharya P (ser eds) Arsenic in the environment, vol 4. CRC Press, Balkema, 209 pGoogle Scholar
  32. 32.
    Bell FG, Stacey TR, Genske DD (2000) Mining subsidence and its effects on the environment: some differing examples. Environ Geol 40(1–2):135–152CrossRefGoogle Scholar
  33. 33.
    Hüttl RF (1998) Ecology of post-mining landscapes in the Lusatian lignite mining district, Germany. In: Fox HR, Morre HM, McIntosh AD (eds) Fourth International conference of the internat affiliation of land reclamationists. Balkema, NottinghamGoogle Scholar
  34. 34.
    Krümmelbein J, Horn R, Raab T, Bens O, Hüttl RF (2010) Soil physical parameters of a recently established agricultural recultivation site after brown coal mining in East Germany. Soil Tillage Res 111(1):19–25CrossRefGoogle Scholar
  35. 35.
    Littlewood G (2000) The global mining initiative. Address to Mining 2000, Melbourne September 20. Accessed 8 Sept 2011
  36. 36.
    Paul M, Mann S (2010) Environmental clean-up of the East German uranium mining legacy: discussion of some key experiences made under the Wismut remediation program. In: Lam E, Rowson J, Ozberk E (eds) Uranium 2010 – Proc 3 rd Internatational conference uranium, vol II, 15–18 Aug, Saskatoon, pp 481–493Google Scholar
  37. 37.
    AusIMM (2011) Australasian institute of mining and metallurgy. Accessed 8 Sept 2011
  38. 38.
    CSIRO (2011) Sustainability. Commonwealth Scientific and Industrial Research Organisation. Accessed 8 Sept 2011
  39. 39.
    Mining Association of Canada (2011) Towards sustainable mining. Accessed 8 Sept 2011
  40. 40.
    PDAC (2007) Prospectors and developers association of Canada. Accessed 8 Sept 2011
  41. 41.
    United Nation (1987) Report of the World commission on environment and development: our common future. (Brundtland Commission)
  42. 42.
    Rajaram V, Dutta S, Parameswaran K (2005) Sustainable mining practices: a global perspective. CRC Press, Baco Raton, 370 pCrossRefGoogle Scholar
  43. 43.
    Marker BR, Petterson MG, McEvoy F, Stephenson MH (eds) (2005) Sustainable minerals operation in the developing world. Geological Society Special Publication 250, 249 pGoogle Scholar
  44. 44.
    Saling P, Kicherer A, Dittrich-Krämer B, Wittlinger R, Zombik W, Schmidt I, Schrott W, Schmidt S (2002) Eco-efficiency analysis by BASF: the method. Int J Life Cycle Assess 7(4):203–218CrossRefGoogle Scholar
  45. 45.
    Shonnard DR, Kicherer A, Saling P (2003) Industrial applications using BASF eco-efficiency analysis: perspectives on green engineering principles. Environ Sci Technol 37(23):5340–5348CrossRefGoogle Scholar
  46. 46.
    Agricola G (1556) De re metallica. Libri XII. English language version from 1912 by Hoover H and Hoover LH; ISBN 0-486-60006-8; 650 pGoogle Scholar
  47. 47.
    IIED (2002) Breaking new ground: mining, minerals and sustainable development. 462 p. mmsd-final-report. Accessed 8 Sept 2011
  48. 48.
    Reimann C, Äyräs M, Chekushin V, Bogatyrev I, Boyd R, de Caritat P, Dutter R, Finne TE, Halleraker JH, Jæger Ø, Kashulina G, Lehto O, Niskavaara H, Pavlov V, Räisänen ML, Strand T, Volden T (1998) Environmental geochemical atlas of the Central Barents Region. NGU-GTK-CKE Special Publication, Geological Survey Norway, Trondheim, 745 p. Accessed 8 Sept 2011
  49. 49.
    Adriano DC (2001) Trace elements in terrestrial environments. Biogeochemistry, bioavailability and risks of metals. 2nd ed. Springer, New York, 867 pCrossRefGoogle Scholar

Books and Reviews

  1. Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2(6):335–341CrossRefGoogle Scholar
  2. Breitkreuz C, Drebenstedt C (eds) (2009) Sustainable mining and environment – a German – Latin American perspective. TU Bergakademie Freiberg, FreibergGoogle Scholar
  3. Einaudi MT (2000) Mineral resources: assets and liabilities. In: Ernst WG (ed) Earth systems: processes and issues, 23. Cambridge University Press, Cambridge, pp 346–372Google Scholar
  4. Figueiredo BR (2000) Mine’rios e ambiente. Editora da Unicamp, Coleção Livro-Texto, 401 pGoogle Scholar
  5. Fubini B, Fenoglio I (2007) Toxic potential of mineral dusts. Elements 3(6):407–414CrossRefGoogle Scholar
  6. Hüttl RF, Heinkele T, Wisniewski J (1996) Minesite recultivation. Springer, New York, 172 pCrossRefGoogle Scholar
  7. Maskall J, Whitehead K, Thornton I (1995) Heavy metal migration in soils and rocks at historical mining sites. Environ Geochem Health 17:127–138CrossRefGoogle Scholar
  8. Mining, People and the Environment (online magazine) Accessed 8 Sept 2011
  9. Morin G, Calas G (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements 2(2):97–102CrossRefGoogle Scholar
  10. Sharma AK (no year) Scientific and sustainable mining. Accessed 8 Sept 2011
  11. Woodward J, Place C, Arbeit K (2000) Energy resources and the environment. In: Ernst WG (ed) Earth systems: processes and issues, vol 24. Cambridge University Press, Cambridge, pp 373–401Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jörg Matschullat
    • 1
  • Jens Gutzmer
    • 1
  1. 1.TU Bergakademie Freiberg, Institute of Mineralogy and Helmholtz Institute Freiberg for Resource TechnologyFreibergGermany

Personalised recommendations