Skip to main content

Geochemical Modeling in Environmental and Geological Studies

  • Reference work entry
  • First Online:
Environmental Geology
  • 1139 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC, 2012

Glossary

Activation energy:

The energy that must be overcome in order for a chemical reaction to occur.

Mass transport:

The net movement of mass from one location to another due to hydrological processes such as advection, dynamic dispersion, chemical reactions, and microbial activities.

Rate law:

A rate law is a statement about how the rate of a reaction depends on the concentrations of the participating species.

Solubility product:

Equilibrium constants for various kinds of reactions with a solid phase on one side and its constituent ions on the other.

Species:

A chemical entity distinguishable from other entities by molecular formula and structure, e.g., CO2 and O2 in a gas, and HCO3−, H2CO3o(aq), CO32−, NaHCO3o(aq).

Definition of the Subject and Its Importance

Geochemical modelinguses a set of mathematical expressions thought to represent chemical and transport processes in a particular geological system. The predictions of the model are partially observable or experimentally...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Zhu C, Anderson GM (2002) Environmental applications of geochemical modeling. Cambridge University Press, London, p 304

    Book  Google Scholar 

  2. Helgeson HC et al (1970) Calculation of mass transfer in geo-chemical processes involving aqueous solutions. Geochim Cosmochim Acta 34:569–592

    Article  Google Scholar 

  3. Fang YL, Yeh GT, Burgos WD (2003) A general paradigm to model reaction-based biogeochemical processes in batch systems. Water Resour Res 39(4):1083

    Article  Google Scholar 

  4. Nordstrom DK (2007) Modeling low-temperature geochemical processes. In: Drever JI (ed) Surface and ground water, weathering and soils, treatise on geochemistry. Elsevier, New York, pp 1–38, online update

    Google Scholar 

  5. Wolery TJ (1992) EQ 3/6, A software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0). URCL-MA-110662-PT-I, University of California/Lawrence Livermore Laboratory, Livermore, p 41

    Google Scholar 

  6. Kharaka YK et al (1988) SOLMINEQ.88: a computer program for geochemical modeling of water-rock interactions. Water-resources investigations report 88–4227, US Geological Survey

    Google Scholar 

  7. Parkhurst DL, Appello AAJ (1999) User’s guide to PHREEQC (version 2)-a computer program for speciation, batch-reaction, one dimensional transport, and inverse geochemical modeling. Water-resource investigation report, US Geological Survey, p 312

    Google Scholar 

  8. Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems, version 3.0 user’s manual

    Google Scholar 

  9. Zhu C (2009) Geochemical modeling of reaction paths and geochemical reaction networks. In: Oelkers EH, Schott J (eds) Thermodynamics and kinetics of water-rock interaction. Mineralogical Society of America, Washington, pp 533–569

    Chapter  Google Scholar 

  10. Johnson JW, Lundeen SR (1994) GEMBOCHS thermodynamic data files for use with the EQ 3/6 software package. Lawrence Livermore National Laboratory, p 99

    Google Scholar 

  11. Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRT92 – a software package for calculating the standard molal ther-modynamic properties of minerals, gases, aqueous species, and reactions from 1-bar to 5000-bar and 0°C to 1000°C. Comput Geosci 18(7):899–947

    Article  Google Scholar 

  12. Helgeson HC et al (1978) Summary and critique of the ther-modynamic properties of rock forming minerals. Am J Sci 278A:569–592

    Google Scholar 

  13. Wagman DD et al (1982) The NBS tables of chemical thermo-dynamic properties – selected values for inorganic and C-1 and C-2 organic-substances in SI units. J Phys Chem Ref Data 11(Supplement 2):392

    Google Scholar 

  14. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29(2):445–522

    Article  Google Scholar 

  15. Berman RG (1990) Mixing properties of Ca-Mg-Fe-Mn garnets. Am Mineral 75:328–344

    Google Scholar 

  16. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  17. Nordstrom DKetal (1990) Revised chemical equilibrium data for major water-mineral reactions and their limitations. In: Melchior DC, Bassett RL (eds) Chemical modeling of aqueous systems II. American Chemical Society, Washington, pp 398–413

    Google Scholar 

  18. Robie RA, Hemingway BS (1995) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105pascals) pressure and at higher temperatures. US Geological Survey Bulletin 2131, p 456

    Google Scholar 

  19. Grenthe I et al (1992) The chemical thermodynamics of uranium. Elsevier, New York

    Google Scholar 

  20. Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. Am J Sci 281:1249–1516

    Article  Google Scholar 

  21. Shock EL, Helgeson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochim Cosmochim Acta 52:2009–2036

    Article  Google Scholar 

  22. Shock EL, Helgeson HC, Sverjensky DA (1989) Calculations of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochim Cosmochim Acta 53:2157–2183

    Article  Google Scholar 

  23. Sverjensky DA, Shock EL, Helgeson HC (1997) Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim Cosmochim Acta 61(7):1359–1412

    Article  Google Scholar 

  24. Shock EL et al (1992) Calculation of thermodynamic and transport properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000°C and 5 kb. J Chem Soc London, Faraday Trans 88: 803–826

    Article  Google Scholar 

  25. Tanger JC, Helgeson HC (1988) Calculations of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equation of state for the standard partial molal properties of ions and electrolytes. Am J Sci 288:19–98

    Article  Google Scholar 

  26. Oelkers EH, Helgeson HC (1990) Triple-ion anions and polynuclear complexing in supercritical electrolyte-solutions. Geochim Cosmochim Acta 54(3):727–738

    Article  Google Scholar 

  27. Nordstrom DK, Munoz JL (1994) Geochemical thermodynamics, 2nd edn. Blackwell, Oxford

    Google Scholar 

  28. Harvie CE, Moller N, Weare JH (1984) The predication of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strength at 25°C. Geochim Cosmochim Acta 48(4):723–751

    Article  Google Scholar 

  29. Plummer LN et al (1988) A computer program incorporating Pitzer’s equations for calculation of geochemical reactions in brines. Water resources investigations report 88–4153, US Geological Survey, p 310

    Google Scholar 

  30. Xu T et al (2004) TOUGHREACT user’s guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media (V1.2). Paper LBNL-55460. Lawrence Berkeley National Laboratory

    Google Scholar 

  31. Wolery T et al (2004) Pitzer database development: description of the Pitzer geochemical thermodynamic database data 0.ypf. Appendix I in In-Drift precipitates/salts model (P. Mariner) report ANL-EBS-MD-000045 REV 02. Bechtel SAIC Company, Las Vegas

    Google Scholar 

  32. Garrels RM, Thompson ME (1962) A chemical model for sea water at 25°C and one atmospheric pressure. Am J Sci 260:57–66

    Article  Google Scholar 

  33. Liu FY et al (2010) Antimony speciation and contamination of waters in Xikuangshan Sb mining and smelting area, China. Environ Geochem Health. https://doi.org/10.1007/s10653-010-9284-z

    Article  Google Scholar 

  34. Lindberg RD, Runnells DD (1984) Groundwater redox reactions – an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225(4665):925–927

    Article  Google Scholar 

  35. Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters. Wiley, New York, p 1022

    Google Scholar 

  36. Stumm W (1992) Chemistry of solid-water interfaces: processes at the mineral-water and particle-water interface in natural systems, 1st edn. Wiley, New York

    Google Scholar 

  37. Dzombak DD, Morel FMM (1990) Surface complex modeling: hydrous ferric oxide. Wiley, New York, 393

    Google Scholar 

  38. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. A. A. Balkema, Leiden

    Google Scholar 

  39. Zhu C (2004) Coprecipitation in the barite isostructural family: 1. Binary mixing properties. Geochim Cosmochim Acta, 68(16):3327–3337

    Article  Google Scholar 

  40. Zhu C (2004) Coprecipitation in the barite isostructural family: 2. Binary mixing properties. Geochim Cosmochim Acta, 68(16):3339–3349

    Article  Google Scholar 

  41. Helgeson HC (1968) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-1. Thermodynamic relations. Geochim Cosmochim Acta 32:853–877

    Article  Google Scholar 

  42. Helgeson HC (1979) Mass transfer among minerals and hydro-thermal solutions. In: Barnes HL (ed) Geochemistry of hydrother-mal ore deposits. Wiley, New York, pp 568–610

    Google Scholar 

  43. Anderson GM, Crerar DA (1993) Thermodynamics in geochemistry: the equilibrium model. Oxford University Press, New York, 588

    Google Scholar 

  44. Zhu C et al (2010) Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths. Geochim Cosmochim Acta 74(14):3963–3983

    Article  Google Scholar 

  45. Istok JD et al (2010) A thermodynamically-based model for predicting microbial growth and community composition coupled to system geochemistry: application to uranium bioreduction. J Contam Hydrol 112(1–4):1–14

    Article  Google Scholar 

  46. Liu C et al (2001) Kinetic analysis of the bacterial reduction of goethite. Environ Sci Technol 35(12):2482–2490

    Article  Google Scholar 

  47. Anderson TT, Vrionis HA, Ortiz-Bernard I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microb 69:5884–5891

    Article  Google Scholar 

  48. Roden EE (2008) Microbiological controls on geochemical kinetics 1: fundamentals and case study on microbial Fe(III) oxide reduction. In: Brantley SL, Kubicki J, White AF (eds) Kinetics of water-rock interaction. Springer, New York, pp 335–415

    Chapter  Google Scholar 

  49. Zhu C (2003) A case against Kd-based transport model: natural attenuation at a mill tailings site. Comput Geosci 29:351–359

    Article  Google Scholar 

  50. Yeh GT, Tripathi VS (1989) A critical evaluation of recent development of hydrogeochemical transport models of reactive multi-components. Water Resour Res 25(1):93–108

    Article  Google Scholar 

  51. Liu FY et al (2010) Coupled reactive transport modeling of CO2 sequestration in the Mt. Simon sandstone formation, Midwest U.S.A. Int J Greenh Gas Con 5:294–307

    Article  Google Scholar 

Download references

Acknowledgments

The writing of this entry was also made possible with continued financial support from the US National Science Foundation (EAR0423971, EAR0509775, EAR 0809903) and the US Department of Energy (DE-FG26-04NT42125, DE-FE0004381). Any opinions, findings, and conclusions or recommendations expressed in this material, however, are those of the authors and do not necessarily reflect the views of the US Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhu, C. (2012). Geochemical Modeling in Environmental and Geological Studies. In: LaMoreaux, J. (eds) Environmental Geology. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8787-0_202

Download citation

Publish with us

Policies and ethics