Skip to main content

Dynamic Traffic Routing, Assignment, and Assessment of Traffic Networks

  • Reference work entry
  • First Online:
  • 914 Accesses

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer-Verlag 2009

Glossary

Car-following model:

A mathematical representation (traffic flow model) for driver longitudinal motion behavior.

Dynamic traffic assignment:

Traffic assignment considering the temporal dimension of the problem.

Link or arc:

A roadway segment with homogeneous traffic and roadway characteristics (e.g. same number of lanes, base lane capacity, free-flow speed, speed-at-capacity, and jam density). Typically networks are divided into links for traffic modeling purposes.

Marginal link travel time:

The increase in a link’s travel time resulting from an assignment of an additional vehicle to this link.

Road pricing:

Road pricing is an economic concept in which drivers are charged for the use of the road facility.

Route or path:

A sequence of roadway segments (links or arcs) used by a driver to travel from his/her point of origin to his/her destination.

Static traffic assignment:

Traffic assignment ignoring the temporal dimension of the problem.

Synthetic O-D estimation:
...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   279.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Abdel-Aty MA, Kitamura R, Jovanis PP (1997) Using stated preference data for studying the effect of advanced traffic information on drivers’ route choice. Transp Res Part C Emerg Technol 5(1):39–50

    Article  Google Scholar 

  • Abdelfatah AS, Mahmassani HS (2001) A simulation-based signal optimization algorithm within a dynamic traffic assignment framework. In: IEEE intelligent transportation systems proceedings, IEEE conference on intelligent transportation systems, Proceedings, ITSC 2001, Oakland

    Google Scholar 

  • Abdelghany KF, Mahmassani HS (2001) Dynamic trip assignment-simulation model for intermodal transportation networks. Transp Res Rec 1771:52–60

    Article  Google Scholar 

  • Abdelghany KF, Valdes DM et al (1999) Real-time dynamic traffic assignment and path-based signal coordination: application to network traffic management. Transp Res Rec 1667:67–76

    Article  Google Scholar 

  • Abdelghany AF, Abdelghany KF et al (2000) Dynamic traffic assignment in design and evaluation of high-occupancy toll lanes. Transp Res Rec 1733:39–48

    Article  Google Scholar 

  • Abdulhai B, Porwal H, Recker W (2002) Short-term freeway traffic flow prediction using genetically optimized time delay-based neural networks. ITS J Intell Transp Syst J 7(1):3–41

    Article  MATH  Google Scholar 

  • Ahmed M, Cook AR (1982) Analysis of freeway traffic time series data by using Box-Jenkins techniques. Transp Res Rec 722:1–9

    Google Scholar 

  • Ahn K, Rakha H et al (2002) Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels. J Transp Eng 128(2):182–190

    Article  Google Scholar 

  • Ahn K, Rakha H et al (2004) Microframework for modeling of high-emitting vehicles. Transp Res Rec 1880:39–49

    Article  Google Scholar 

  • Akcelik R, Rouphail NM (1994) Overflow queues and delays with random and platooned arrivals at signalized intersections. J Adv Transp 28(3):227–251

    Article  Google Scholar 

  • Allen RW, Stein AC, Rosenthal TJ, Ziedman D, Torres JF, Halati A (1991) Human factors simulation investigation of driver route diversion and alternate route selection using in-vehicle navigation systems. In: Vehicle navigation & information systems conference, Dearborn, 20–23 Oct 1991. Proceedings Part 1 (of 2) Society of Automotive Engineers. SAE, Warrendale, pp 9–26

    Google Scholar 

  • Anastassopoulos I (2000) Fault-tolerance and incident detection using Fourier transforms. Purdue University, Westlafayette

    Google Scholar 

  • Arafeh M, Rakha H (2005) Genetic algorithm approach for locating automatic vehicle identification readers. In: IEEE intelligent transportation system conference, Vienna, 2005. Proceedings ITSV‘05 IEEE intelligent conference on transportations systems, pp 1153–1158

    Google Scholar 

  • Arnott R, de Palma A, Lindsey R (1991) Does providing information to drivers reduce traffic congestion? Transp Res Part A (General) 25A(5):309

    Article  Google Scholar 

  • Arrow KJ (1951) Alternative approaches to the theory of choice in risk-taking situations. Econometrica 19(4):404–437

    Article  MathSciNet  MATH  Google Scholar 

  • Ashok K (1996) Estimation and prediction of time-dependent origin-destination flows. PhD thesis, Massachusetts Institute of Technology, Boston

    Google Scholar 

  • Ashok K, Ben-Akiva ME (1993) Dynamic origin-destination matrix estimation and prediction for real-time traffic management systems. In: Daganzo CF (ed) 12th international symposium on transportation and traffic theory. Elsevier, New York, pp 465–484

    Google Scholar 

  • Ashok K, Ben-Akiva ME (2000) Alternative approaches for realtime estimation and prediction of time-dependent origin destination flows. Transp Sci 34(1):21–36

    Article  MATH  Google Scholar 

  • Balakrishna R, Koutsopoulos HN et al (2005) Simulation-based evaluation of advanced traveler information systems. Transp Res Rec 1910:90–98

    Article  Google Scholar 

  • Barth M, An F et al (2000) Comprehensive modal emission model (CMEM): version 2.0 user’s guide. University of California, Riverside

    Google Scholar 

  • Bell M, Iida Y (1997) Transportation network analysis. Iida Y translator. Wiley, Chichester/New York

    Google Scholar 

  • Ben-Akiva M, Kroes E et al (1992) Real-time prediction of traffic congestion. Vehicle Navigation and Information Systems, IEEE, New York

    Google Scholar 

  • Ben-Akiva M, Bolduc D et al (1993) Estimation of travel choice models with randomly distributed values of time. Transp Res Rec 1413:88–97

    Google Scholar 

  • Ben-Akiva M, Bierlaire M, Bottom J, Koutsopoulos H et al (1997) Development of a route guidance generation system for real-time application. In: 8th international federation of automatic control symposium on transportation systems, Chania, 16–18 June 1997

    Google Scholar 

  • Ben-Akiva M, Bierlaire M et al (1998a) DynaMIT: a simulation based system for traffic prediction. DACCORD Short Term Forecasting Workshop, Delft, February 1998

    Google Scholar 

  • Ben-Akiva MMB, Koutsopoulos H, Mishalani R (1998b) DynaMIT: a simulation-based system for traffic prediction. DACCORD Short Term Forecasting Workshop, Delft

    MATH  Google Scholar 

  • Bierlaire M, Crittin F (2004) An efficient algorithm for real-time estimation and prediction of dynamic OD tables. Oper Res 52(1):116–127

    Article  Google Scholar 

  • Birge JR, Ho JK (1993) Optimal flows in stochastic dynamic networks with congestion. Oper Res 41(1):203–216

    Article  MathSciNet  MATH  Google Scholar 

  • Bolland JD, Hall MD et al (1979) SATURN: simulation and assignment of traffic in urban road networks. In: International conference on traffic control systems, Berkeley

    Google Scholar 

  • Boyce DE, Ran B, Leblanc LJ (1995) Solving an instantaneous dynamic user-optimal route choice model. Transp Sci 29(2):128–142

    Article  MATH  Google Scholar 

  • Braess D (1968) Über ein Paradoxon der Verkehrsplanung. Unternehmensforschung 12:258–268

    MathSciNet  MATH  Google Scholar 

  • Brilon W (1995) Delays at oversaturated unsignalized intersections based on reserve capacities. Transp Res Rec 1484:1–8

    Google Scholar 

  • Brilon W, Wu N (1990) Delays at fixed-time traffic signals under time-dependent traffic conditions. Traffic Eng Control 31(12):8

    Google Scholar 

  • Burell JE (1968) Multipath route assignment and its application to capacity-restraint. In: Fourth international symposium on the theory of traffic flow, Karlsruhe

    Google Scholar 

  • Burell JE (1976) Multipath route assignment: a comparison of two methods. In: Florian M (ed) Traffic equilibrium methods. Lecture notes in economics and mathematical systems, vol 118. Springer, New York, pp 210–239

    Google Scholar 

  • Busemeyer JR, Townsend JT (1993) Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychol Rev 100(3):432

    Article  Google Scholar 

  • Byung-Wook Wie TRL, Friesz TL, Bernstein D (1995) A discrete time, nested cost operator approach to the dynamic network user equilibrium problem. Transp Sci 29(1):79–92

    Article  MATH  Google Scholar 

  • Cantarella GE, Cascetta ES (1995) Dynamic processes and equilibrium in transportation networks: towards a unifying theory. Transp Sci 29(4):305–329

    Article  MATH  Google Scholar 

  • Carey M (1986) Constraint qualification for a dynamic traffic assignment model. Transp Sci 20(1):55–58

    Article  Google Scholar 

  • Carey M (1987) Optimal time-varying flows on congested networks. Oper Res 35(1):58–69

    Article  MathSciNet  MATH  Google Scholar 

  • Carey M (1992) Nonconvexity of the dynamic traffic assignment problem. Transp Res Methodol 26B(2):127

    Article  MathSciNet  Google Scholar 

  • Carey M, Subrahmanian E (2000) An approach to modelling time-varying flows on congested networks. Transp Res Methodol 34B(3):157

    Article  Google Scholar 

  • Cascetta E, Marquis G (1993) Dynamic estimators of origin-destination matrices using traffic counts. Transp Sci 27(4):363–373

    Article  MATH  Google Scholar 

  • Cassidy MJ, Han LD (1993) Proposed model for predicting motorist delays at two-lane highway work zones. J Transp Eng 119(1):27–42

    Article  Google Scholar 

  • Cassidy MJ, Rudjanakanoknad J (2005) Increasing the capacity of an isolated merge by metering its on-ramp. Transp Res Part B Methodol 39(10):896–913

    Article  Google Scholar 

  • Cassidy MJ, Windover JR (1995) Methodology for assessing dynamics of freeway traffic flow. Transp Res Rec 1484:73–79

    Google Scholar 

  • Cassidy MJ, Son Y et al (1994) Estimating motorist delay at two-lane highway work zones. Transp Res Part A Policy Pract 28(5):433–444

    Article  Google Scholar 

  • Castillo E, Menendez JM, Jimenez P (2008) Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations. Transp Res Part B Methodol 42(5):455–481

    Article  Google Scholar 

  • Catling I (1977) A time-dependent approach to junction delays. Traffic Eng Control 18(11):520–523, 526

    Google Scholar 

  • Chang GL, Mahmassani HS (1988) Travel time prediction and departure time adjustment behavior dynamics in a congested traffic system. Transp Res Part B Methodol 22B(3):217–232

    Article  Google Scholar 

  • Chang GL, Tao X (1999) Integrated model for estimating time varying network origin-destination distributions. Transp Res Part A Policy Pract 33(5):381–399

    Article  Google Scholar 

  • Chen SQ (2000) Comparing probabilistic and fuzzy set approaches for design in the presence of uncertainty. In: Aerospace and ocean engineering. PhD, Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Chiu YC, Mahmassani HS (2001) Toward hybrid dynamic traffic assignment-models and solution procedures. In: IEEE intelligent transportation systems proceedings, IEEE conference on intelligent transportation systems, Proceedings, ITSC 2001, Oakland

    Google Scholar 

  • Coifman B (1998) New algorithm for vehicle reidentification and travel time measurement on freeways. In: Proceedings of the 1998 5th international conference on applications of advanced technologies in transportation, Newport Beach, Proceedings of the international conference on applications of advanced technologies in transportation engineering. ASCE, Reston

    Google Scholar 

  • Coifman B, Banerjee B (2002) Vehicle reidentification and travel time measurement on freeways using single loop detectors-from free flow through the onset of congestion. In: Proceedings of the seventh international conference on: applications of advanced technology in transportation, Cambridge, 5–7 Aug 2002. Proceedings of the international conference on applications of advanced technologies in transportation engineering. American Civil Engineers

    Google Scholar 

  • Coifman B, Cassidy M (2001) Vehicle reidentification and travel time measurement, Part I: Congested freeways. In: IEEE intelligent transportation systems proceedings, Conference IEEE on intelligent transportation systems, Proceedings, ITSC 2001, Oakland

    Google Scholar 

  • Coifman B, Ergueta E (2003) Improved vehicle reidentification and travel time measurement on congested freeways. J Transp Eng 129(5):475–483

    Article  Google Scholar 

  • Colyar JD, Rouphail NM (2003) Measured distributions of control delay on signalized arterials. Transp Res Rec 1852:1–9

    Article  Google Scholar 

  • Cremer M, Keller H (1987) New class of dynamic methods for the identification of origin-destination flows. Transp Res Part B Methodol 21(2):117–132

    Article  Google Scholar 

  • Cronje WB (1983a) Analysis of existing formulas for delay, overflow, and stops. Transp Res Rec 905:89–93

    Google Scholar 

  • Cronje WB (1983b) Derivation of equations for queue length, stops, and delay for fixed-time traffic signals. Transp Res Rec 905:93–95

    Google Scholar 

  • Cronje WB (1983c) Optimization model for isolated signalized traffic intersections. Transp Res Rec 905:80–83

    Google Scholar 

  • Cronje WB (1986) Comparative analysis of models for estimating delay for oversaturated conditions at fixed-time traffic signals. Transp Res Record 1091:48–59

    Google Scholar 

  • Dafermos S (1980) Traffic equilibrium and variational inequalities. Transp Sci 14(1):42–54

    Article  MathSciNet  Google Scholar 

  • Daganzo CF, Laval JA (2005) On the numerical treatment of moving bottlenecks. Transp Res Part B Methodol 39(1):31–46

    Article  Google Scholar 

  • Daniel J, Fambro DB et al (1996) Accounting for nonrandom arrivals in estimate of delay at signalized intersections. Transp Res Rec 1555:9–16

    Article  Google Scholar 

  • Dantzig GB (1957) The shortest route problem. Oper Res 5:270–273

    Article  Google Scholar 

  • Dial R (1971) A probabilistic multipath traffic assignment model which obviates path enumeration. Transp Res 5:83–111

    Article  Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connection with graphics. Numer Math 1:209–271

    Article  Google Scholar 

  • Dion F, Rakha H (2006) Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates. Transp Res Part B 40:745–766

    Article  Google Scholar 

  • Dion F, Rakha H et al (2004a) Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections. Transp Res Part B Methodol 38(2):99–122

    Article  Google Scholar 

  • Dion F, Rakha H et al (2004b) Evaluation of potential transit signal priority benefits along a fixed-time signalized arterial. J Transp Eng 130(3):294–303

    Article  Google Scholar 

  • Elefteriadou L, Fang C et al (2005) Methodology for evaluating the operational performance of interchange ramp terminals. Transp Res Rec 1920:13–24

    Article  Google Scholar 

  • Engelbrecht RJ, Fambro DB et al (1996) Validation of generalized delay model for oversaturated conditions. Transp Res Rec 1572:122–130

    Article  Google Scholar 

  • Evans JL, Elefteriadou L et al (2001) Probability of breakdown at freeway merges using Markov chains. Transp Res Part B Methodol 35(3):237–254

    Article  Google Scholar 

  • Fambro DB, Rouphail NM (1996) Generalized delay model for signalized intersections and arterial streets. Transp Res Rec 1572:112–121

    Article  Google Scholar 

  • Fang FC, Elefteriadou L et al (2003) Using fuzzy clustering of user perception to define levels of service at signalized intersections. J Transp Eng 129(6):657–663

    Article  Google Scholar 

  • Fisk C (1979) More paradoxes in the equilibrium assignment problem. Transp Res 13B:305–309

    Article  Google Scholar 

  • Flannery A, Kharoufeh JP et al (2005) Queuing delay models for single-lane roundabouts. Civ Eng Environ Syst 22(3):133–150

    Article  Google Scholar 

  • Frank M (1981) The Braess paradox. Math Program 20:283–302

    Article  MathSciNet  MATH  Google Scholar 

  • Frank M, Wolfe P (1956) An algorithm of quatdratic programming. Nav Res Logist 3:95–110

    Article  Google Scholar 

  • Friesz TL, Luque J, Tobin RL, Wie B-W (1989) Dynamic network traffic assignment considered as a continuous time optimal control problem. Oper Res 37(6):893–901

    Article  MathSciNet  MATH  Google Scholar 

  • Friesz TL, Bernstein D, Smith TE, Tobin RL, Wie BW (1993) A variational inequality formulation of the dynamic network user equilibrium problem. Oper Res 41(1):179–191

    Article  MathSciNet  MATH  Google Scholar 

  • Ghali MO, Smith MJ (1995) A model for the dynamic system optimum traffic assignment problem. Transp Res 29B(3):155–170

    Article  Google Scholar 

  • Greenshields BD (1934) A study of traffic capacity. Proc Highway Res Board 14:448–477

    Google Scholar 

  • Hagring O, Rouphail NM et al (2003) Comparison of capacity models for two-lane roundabouts. Transp Res Rec 1852:114–123

    Article  Google Scholar 

  • Hall MD, Van Vliet D et al (1980) SATURN a simulation assignment model of the evaluation of traffic management schemes. Traffic Eng Control 4:167–176

    Google Scholar 

  • Hawas YE (1995) A decentralized architecture and local search procedures for real-time route guidance in congested vehicular traffic networks. University of Texas, Austin

    Google Scholar 

  • Hawas YE (2004) Development and calibration of route choice utility models: neuro-fuzzy approach. J Transp Eng 130(2):171–182

    Article  MathSciNet  Google Scholar 

  • Hawas YE, Mahmassani HS (1995) A decentralized scheme for real-time route guidance in vehicular traffic networks. In: Second world congress on intelligent transport systems, Yokohama, 1995, pp 1965–1963

    Google Scholar 

  • Hawas YE, Mahmassani HS (1997) Comparative analysis of robustness of centralized and distributed network route control systems in incident situations. Transp Res Rec 1537:83–90

    Article  Google Scholar 

  • Hawas YE, Mahmassani HS, Chang GL, Taylor R, Peeta S, Ziliaskopoulos A (1997) Development of dynasmart-X software for real-time dynamic traffic assignment. Center for Transportation Research, The University of Texas, Austin

    Google Scholar 

  • Hellinga BR, Van Aerde M (1998) Estimating dynamic O-D demands for a freeway corridor using loop detector data. Canadian Society for Civil Engineering, Halifax

    Google Scholar 

  • Ho JK (1980) A successive linear optimization approach to the dynamic traffic assignment problem. Transp Sci 14(4):295–305

    Article  MathSciNet  Google Scholar 

  • Hu SR, Madanat SM, Krogmeier JV, Peeta S (2001) Estimation of dynamic assignment matrices and OD demands using adaptive Kalman filtering. Intell Transp Syst J 6:281–300

    MATH  Google Scholar 

  • Chen H-K, Hsueh C-F (1998) A model and an algorithm for the dynamic user-optimal route choice problem. Transp Res Part B Methodol 32B(3):219–234

    Article  Google Scholar 

  • Ishak S, Al-Deek H (2003) Performance evaluation of a shortterm freeway traffic prediction model. Transportation Research Board 82nd annual meeting, Washington, DC

    Google Scholar 

  • Janson BN (1991a) Convergent algorithm for dynamic traffic assignment. Transp Res Rec 1328:69–80

    Google Scholar 

  • Janson BN (1991b) Dynamic traffic assignment for urban road networks. Transp Res Part B Methodol 25B:2–3

    Google Scholar 

  • Jayakrishnan R, Mahmassani HS (1990) Dynamic simulation assignment methodology to evaluate in-vehicle information strategies in urban traffic networks. In: Winter simulation conference proceedings, New Orleans 1990. 90 Winter simulation conference winter simulation conference proceedings. IEEE, Piscataway (IEEE cat n 90CH2926–4)

    Google Scholar 

  • Jayakrishnan R, Mahmassani HS (1991) Dynamic modelling framework of real-time guidance systems in general urban traffic networks. In: Proceedings of the 2nd international conference on applications of advanced technologies in transportation engineering, Minneapolis. ASCE, New York

    Google Scholar 

  • Jayakrishnan R, Mahmassani HS et al (1993) User-friendly simulation model for traffic networks with ATIS/ATMS. In: Proceedings of the 5th international conference on computing in civil and building engineering V ICCCBE, Anaheim 1993. ASCE, New York

    Google Scholar 

  • Jeffery DJ (1981) The potential benefits of route guidance. TRRL, Department of Transportation, Crowthorne

    Google Scholar 

  • Jha M, Madanat S, Peeta S (1998) Perception updating and day-to-day travel choice dynamics in traffic networks with information provision. Transp Res Part C Emerg Technol 6C(3):189–212

    Article  Google Scholar 

  • Katsikopoulos KV, Duse-Anthony Y et al (2000) The framing of drivers’ route choices when travel time information is provided under varying degrees of cognitive load. J Hum Factors Ergon Soc 42(3):470–481

    Article  Google Scholar 

  • Kerner BS (2004a) The physics of traffic. Springer, Berlin

    Book  Google Scholar 

  • Kerner BS (2004b) Three-phase traffic theory and highway capacity. Physica A 333(1–4):379–440

    Article  MathSciNet  Google Scholar 

  • Kerner BS (2005) Control of spatiotemporal congested traffic patterns at highway bottlenecks. Physica A 355(2–4):565–601

    Article  Google Scholar 

  • Kerner BS, Klenov SL (2006) Probabilistic breakdown phenomenon at on-ramp bottlenecks in three-phase traffic theory: congestion nucleation in spatially non-homogeneous traffic. Physica A 364:473–492

    Article  Google Scholar 

  • Kerner BS, Rehborn H et al (2004) Recognition and tracking of spatial-temporal congested traffic patterns on freeways. Transp Res Part C Emerg Technol 12(5):369–400

    Article  Google Scholar 

  • Khattak AJ, Schofer JL, Koppelman FS (1993) Commuters’ enroute diversion and return decisions: analysis and implications for advanced traveler information systems. Transp Res Policy Pract 27A(2):101

    Article  Google Scholar 

  • Kim H, Baek S et al (2001) Origin-destination matrices estimated with a genetic algorithm from link traffic counts. Transp Res Rec 1771:156–163

    Article  Google Scholar 

  • Koutsopoulos HN, Polydoropoulou A et al (1995) Travel simulators for data collection on driver behavior in the presence of information. Transp Res Part C Emerg Technol 3(3):143

    Article  Google Scholar 

  • Krishnamurthy S, Coifman B (2004) Measuring freeway travel times using existing detector infrastructure. In: Proceedings 7th international IEEE conference on intelligent transportation systems, ITSC, Washington, DC

    Google Scholar 

  • Laval JA, Daganzo CF (2006) Lane-changing in traffic streams. Transp Res Part B Methodol 40(3):251–264

    Article  Google Scholar 

  • Lawson TW, Lovell DJ et al (1996) Using input-output diagram to determine spatial and temporal extents of a queue upstream of a bottleneck. Transp Res Rec 1572:140–147

    Article  Google Scholar 

  • LeBlanc LJ (1975) An algorithm for discrete network design problem. Transp Sci 9:183–199

    Article  Google Scholar 

  • LeBlanc LJ, Abdulaal M (1970) A comparison of user-optimum versus system-optimum traffic assignment in transportation network design. Transp Res 18B:115–121

    MathSciNet  Google Scholar 

  • LeBlanc LJ, Morlok EK et al (1974) An accurate and efficient approach to equilibrium traffic assignment on congested networks. Transp Res Rec 491:12–23

    Google Scholar 

  • Lee S, Fambro D (1999) Application of the subset ARIMA model for short-term freeway traffic volume forecasting. Transp Res Rec 1678:179–188

    Article  Google Scholar 

  • Leonard DR, Tough JB et al (1978) CONTRAM a traffic assignment model for predicting flows and queues during peak periods. TRRL SR 568. Transport Research Laboratory, Crowthome

    Google Scholar 

  • Lertworawanich P, Elefteriadou L (2001) Capacity estimations for type B weaving areas based on gap acceptance. Transp Res Rec 1776:24–34

    Article  Google Scholar 

  • Lertworawanich P, Elefteriadou L (2003) A methodology for estimating capacity at ramp weaves based on gap acceptance and linear optimization. Transp Res Part B Methodol 37(5):459–483

    Article  Google Scholar 

  • Li Y (2001) Development of dynamic traffic assignment models for planning applications. Northwestern University, Evanston

    Google Scholar 

  • Li J, Rouphail NM et al (1994) Overflow delay estimation for a simple intersection with fully actuated signal control. Transp Res Rec 1457:73–81

    Google Scholar 

  • Lighthill MJ, Witham GB (1955) On kinematic waves. I: Flood movement in long rivers, II A theory of traffic flow on long crowded roads. Proc R Soc Lond A 229:281–345

    Article  Google Scholar 

  • Lorenz MR, Elefteriadou L (2001) Defining freeway capacity as function of breakdown probability. Transp Res Rec 1776:43–51

    Article  Google Scholar 

  • Lotan T (1997) Effects of familiarity on route choice behavior in the presence of information. Transp Res Part C Emerg Technol 5(3–4):225–243

    Article  Google Scholar 

  • Mahmassani H, Jou R-C (2000) Transferring insights into commuter behavior dynamics from laboratory experiments to ®eld surveys. Transp Res Part A Policy Pract 34A(4):243–260

    Article  Google Scholar 

  • Mahmassani H, Peeta S (1992) System optimal dynamic assignment for electronic route guidance in a congested traffic network. In: Gartner NH, Improta G (eds) Urban traffic networks. Dynamic flow modelling and control. Springer, Berlin, pp 3–37

    Google Scholar 

  • Mahmassani HS, Peeta S (1993) Network performance under system optimal and user equilibrium dynamic assignments: implications for ATIS. Transp Res Rec 1408:83–93

    Google Scholar 

  • Mahmassani HS, Peeta S (1995) System optimal dynamic assignment for electronic route guidance in a congested traffic network. In: Gartner NH, Improta G (eds) Urban traffic networks: dynamic flow modeling and control. Springer, Berlin, pp 3–37

    Chapter  MATH  Google Scholar 

  • Mahmassani HS, Peeta S, Hu T, Ziliaskopoulos A (1993) Algorithm for dynamic route guidance in congested networks with multiple user information availability groups. In: 26th international symposium on automotive technology and automation, Aachen

    Google Scholar 

  • Mahmassani HS, Chiu Y-C, Chang GL, Peeta S, Ziliaskopoulos A (1998a) Off-line laboratory test results for the DYNASMARTX real-time dynamic traffic assignment system. Center for Transportation Research, The University of Texas, Austin

    Google Scholar 

  • Mahmassani HS, Hawas Y, Abdelghany K, Abdelfatah A, Chiu Y-C, Kang Y, Chang GL, Peeta S, Taylor R, Ziliaskopoulos A (1998b) DYNASMART-X, vol II: Analytical and algorithmic aspects. Center for Transportation Research, The University of Texas, Austin

    Google Scholar 

  • Mahmassani HS, Hawas Y, Hu T-Y, Ziliaskopoulos A, Chang G-L, Peeta S, Taylor R (1998c) Development of Dynasmart-X software for real-time dynamic traffic assignment. Technical report ST067-85-Tast E (revised) submitted to Oak Ridge National Laboratory under subcontract 85X-SU565C

    Google Scholar 

  • Matsoukis EC (1986) Road traffic assignment, a review. Part I: Non-equilibrium methods. Transp Plan Technol 11:69–79

    Article  Google Scholar 

  • Matsoukis EC, Michalopolos PC (1986) Road traffic assignment, a review. Part II: Equilibrium methods. Transp Plan Technol 11:117–135

    Article  Google Scholar 

  • Mekky A (1995) Toll revenue and traffic study of highway 407 in Toronto. Transp Res Rec 1498:5–15

    Google Scholar 

  • Mekky A (1996) Modeling toll pricing strategies in greater Toronto areas. Transp Res Rec 1558:46–54

    Article  Google Scholar 

  • Mekky A (1998) Evaluation of two tolling strategies for highway 407 in Toronto. Transp Res Rec 1649:17–25

    Article  Google Scholar 

  • Merchant DK, Nemhauser GL (1978a) A model and an algorithm for the dynamic traffic assignment problems. Transp Sci 12(3):183–199

    Article  Google Scholar 

  • Merchant DK, Nemhauser GL (1978b) Optimality conditions for a dynamic traffic assignment model. Transp Sci 12(3):200–207

    Article  Google Scholar 

  • Minderhoud MM, Elefteriadou L (2003) Freeway weaving: comparison of highway capacity manual 2000 and Dutch guidelines. Transp Res Rec 1852:10–18

    Article  Google Scholar 

  • Moskowitz K (1956) California method for assigning directed traffic to proposed freeways. Bull Highw Res Board 130:1–26

    Google Scholar 

  • Munnich LW Jr, Hubert HH et al (2007) L-394 MnPASS high-occupancy toll lanes planning and operational issues and outcomes (lessons learning in year 1). Transp Res Rec 1996:49–57

    Article  Google Scholar 

  • Murchland JD (1970) Braess’s paradox of traffic flow. Transp Res 4:391–394

    Article  Google Scholar 

  • Nagel K (1996) Particle hopping model and traffic flow theory. Phys Rev E 53(5):4655–4672

    Article  Google Scholar 

  • Nagel K, Schrekenberg M (1992) Cellular automaton model for freeway traffic. J Phys 2(20):2212–2229

    Google Scholar 

  • Nagel K, Schrekenberg M (1995) Traffic jam dynamics in stochastic cellular automata. US D Energy, Los Alamos National Laboratory, LA-UR-95-2132, Los Alamos

    Google Scholar 

  • Nakayama S, Kitamura R (2000) Route choice model with inductive learning. Transp Res Rec 1725:63–70

    Article  Google Scholar 

  • Nakayama S, Kitamura R et al (2001) Drivers’ route choice rules and network behavior: do drivers become rational and homogeneous through learning? Transp Res Rec 1752:62–68

    Article  Google Scholar 

  • Newell GF (1965) Approximation methods for queues with application to the fixed-cycle traffic light. SIAM Rev 7:223–240

    Article  MathSciNet  MATH  Google Scholar 

  • Newell GF (1999) Delays caused by a queue at a freeway exit ramp. Transp Res Part B Methodol 33(5):337–350

    Article  Google Scholar 

  • Nguyen S (1969) An algorithm for the assignment problem. Transp Sci 8:203–216

    Article  Google Scholar 

  • Nie Y, Zhang HM et al (2005) Inferring origin-destination trip matrices with a decoupled GLS path flow estimator. Transp Res Part B Methodol 39(6):497–518

    Article  Google Scholar 

  • Noonan J, Shearer O (1998) Intelligent transportation systems field operational test: cross-cutting study advance traveler information systems. US Department of Transportation, Federal Highways Administration, Intelligent Transportation System, Washington, DC

    Google Scholar 

  • Okutani I (1987) The Kalman filtering approaches in some transportation and traffic problems. In: Proceedings of the tenth international symposium on transportation and traffic theory. Elsevier, New York

    Google Scholar 

  • Park B (2002) Hybrid neuro-fuzzy application in short-term freeway traffic volume forecasting. Transp Res Rec 1802:190–196

    Article  Google Scholar 

  • Park S, Rakha H (2006) Energy and environmental impacts of roadway grades. Transp Res Rec 1987:148–160

    Article  Google Scholar 

  • Park D, Rilett LR (1998) Forecasting multiple-period freeway link travel times using modular neural networks. Transp Res Rec 1617:163–170

    Article  Google Scholar 

  • Park D, Rilett LR (1999) Forecasting freeway link travel times with a multilayer feedforward neural network. Comput-Aided Civ Infrastruct Eng 14(5):357–367

    Article  Google Scholar 

  • Park D, Rilett LR et al (1998) Forecasting multiple-period freeway link travel times using neural networks with expanded input nodes. In: Proceedings of the 1998 5th international conference on applications of advanced technologies in transportation, Newport Beach and Proceedings of the international conference on applications of advanced technologies in transportation engineering 1998, ASCE, Reston

    Google Scholar 

  • Park D, Rilett LR et al (1999) Spectral basis neural networks for real-time travel time forecasting. J Transp Eng 125(6):515–523

    Article  Google Scholar 

  • Pavlis Y, Papageorgiou M (1999) Simple decentralized feedback strategies for route guidance in traffic networks. Transp Sci 33(3):264–278

    Article  MATH  Google Scholar 

  • Peeta S (1994) System optimal dynamic traffic assignment in congested networks with advanced information systems. University of Texas, Austin

    Google Scholar 

  • Peeta S, Bulusu S (1999) Generalized singular value decomposition approach for consistent on-line dynamic traffic assignment. Transp Res Rec 1667:77

    Article  Google Scholar 

  • Peeta S, Mahmassani HS (1995a) Multiple user classes real-time traffic assignment for online operations: a rolling horizon solution framework. Transp Res Part C Emerg Technol 3C(2):83

    Article  Google Scholar 

  • Peeta S, Mahmassani HS (1995b) System optimal and user equilibrium time-dependent traffic assignment in congested networks. Ann Oper Res 60:81–113

    Article  MATH  Google Scholar 

  • Peeta S, Paz A (2006) Behavior-consistent within-day traffic routing under information provision. In: IEEE intelligent transportation systems conference, Toronto, pp 212–217

    Google Scholar 

  • Peeta S, Ramos JL (2006) Driver response to variable message signs-based traffic information. Intell Transp Syst 153(1):2–10

    Google Scholar 

  • Peeta S, Yang T-H (2000) Stability of large-scale dynamic traffic networks under on-line control strategies. In: 6th international conference on applications of advanced technologies in transportation engineering, Singapore, paper no. 11 (eProceedings on CD), p 9

    Google Scholar 

  • Peeta S, Yang T-H (2003) Stability issues for dynamic traffic assignment. Automatica 39(1):21–34

    Article  MathSciNet  MATH  Google Scholar 

  • Peeta S, Yu JW (2004) Adaptability of a hybrid route choice model to incorporating driver behavior dynamics under information provision. IEEE Trans Syst Man Cybern Part A Syst Humans 34(2):243–256

    Article  Google Scholar 

  • Peeta S, Yu JW (2006) Behavior-based consistency-seeking models as deployment alternatives to dynamic traffic assignment models. Transp Res Part C Emerg Technol 14(2):114–138

    Article  Google Scholar 

  • Peeta S, Zhou C (1999a) On-line dynamic update heuristics for robust guidance. In: International conference modeling and management in transportation, Cracow, October 1999

    Google Scholar 

  • Peeta S, Zhou C (1999b) Robustness of the off-line a priori stochastic dynamic traffic assignment solution for on-line operations. Transp Res Part C Emerg Technol 7C(5):281–303

    Article  Google Scholar 

  • Peeta S, Ziliaskopoulos AK (2001) Foundations of dynamic traffic assignment: the past, the present and the future. Netw Spat Econ 1(3–4):233

    Article  Google Scholar 

  • Peeta S, Mahmassani HS et al (1991) Effectiveness of real-time information strategies in situations of non-recurrent congestion. In: Proceedings of the 2nd international conference on applications of advanced technologies in transportation engineering, Minneapolis. ASCE, New York

    Google Scholar 

  • Peeta S, Ramos JL, Pasupathy R (2000) Content of variable message signs and on-line driver behavior. Transp Res Rec 1725:102–108

    Article  Google Scholar 

  • Rakha H (1990) An evaluation of the benefits of user and system optimised route guidance strategies. Civil Engineering, Queen’s University, Kingston

    Google Scholar 

  • Rakha H, Ahn K (2004) Integration modeling framework for estimating mobile source emissions. J Transp Eng 130(2):183–193

    Article  Google Scholar 

  • Rakha H, Arafeh M (2007) Tool for calibrating steady-state traffic stream and car-following models. In: Transportation research board annual meeting, Washington, DC, 22–25 Jan 2008

    Google Scholar 

  • Rakha H, Crowther B (2002) Comparison of greenshields, pipes, and van aerde car-following and traffic stream models. Transp Res Rec 1802:248–262

    Article  Google Scholar 

  • Rakha H, Lucic I (2002) Variable power vehicle dynamics model for estimating maximum truck acceleration levels. J Transp Eng 128(5):412–419

    Article  Google Scholar 

  • Rakha HA, Van Aerde MW (1996) Comparison of simulation modules of TRANSYT and integration models. Transp Res Rec 1566:1–7

    Article  Google Scholar 

  • Rakha H, Zhang Y (2004a) INTEGRATION 2.30 framework for modeling lane-changing behavior in weaving sections. Transp Res Rec 1883:140–149

    Article  Google Scholar 

  • Rakha H, Zhang Y (2004b) Sensitivity analysis of transit signal priority impacts on operation of a signalized intersection. J Transp Eng 130(6):796–804

    Article  Google Scholar 

  • Rakha H, Van Aerde M et al (1989) Evaluating the benefits and interactions of route guidance and traffic control strategies using simulation. In: First vehicle navigation and information systems conference VNIS ‘89, Toronto. IEEE, Piscataway

    Google Scholar 

  • Rakha H, Van Aerde M et al (1998) Construction and calibration of a large-scale microsimulation model of the Salt Lake area. Transp Res Rec 1644:93–102

    Article  Google Scholar 

  • Rakha H, Medina A et al (2000) Traffic signal coordination across jurisdictional boundaries: field evaluation of efficiency, energy, environmental, and safety impacts. Transp Res Rec 1727:42–51

    Article  Google Scholar 

  • Rakha H, Kang Y-S et al (2001a) Estimating vehicle stops at undersaturated and oversaturated fixed-time signalized intersections. Transp Res Rec 1776:128–137

    Article  Google Scholar 

  • Rakha H, Lucic I et al (2001b) Vehicle dynamics model for predicting maximum truck acceleration levels. J Transp Eng 127(5):418–425

    Article  Google Scholar 

  • Rakha H, Ahn K et al (2004a) Development of VT-Micro model for estimating hot stabilized light duty vehicle and truck emissions. Transp Res Part D Transp Environ 9(1):49–74

    Article  Google Scholar 

  • Rakha H, Pasumarthy P et al (2004b) Modeling longitudinal vehicle motion: issues and proposed solutions. In: Transport science and technology congress, Athens, Sep 2004

    Google Scholar 

  • Rakha H, Pasumarthy P et al (2004c) The INTEGRATION framework for modeling longitudinal vehicle motion. TRANSTEC, Athens

    Google Scholar 

  • Rakha H, Snare M et al (2004d) Vehicle dynamics model for estimating maximum light-duty vehicle acceleration levels. Transp Res Rec 1883:40–49

    Article  Google Scholar 

  • Rakha H, Flintsch AM et al (2005a) Evaluating alternative truck management strategies along interstate 81. Transp Res Rec 1925:76–86

    Article  Google Scholar 

  • Rakha H, Paramahamsan H et al (2005b) Comparison of static maximum likelihood origin-destination formulations. Transportation and traffic theory: flow, dynamics and human interaction. In: Proceedings of the 16th international symposium on transportation and traffic theory (ISTTT16), pp 693–716

    Google Scholar 

  • Ran B, Boyce DE (1996) A link-based variational inequality formulation of ideal dynamic user-optimal route choice problem. Res Part C Emerg Technol 4C(1):1–12

    Google Scholar 

  • Ran B, Shimazaki T (1989a) A general model and algorithm for the dynamic traffic assignment problems. In: Fifth world conference on transport research, transport policy, management and technology towards, Yokohama, 2001

    Google Scholar 

  • Ran B, Shimazaki T (1989b) Dynamic user equilibrium traffic assignment for congested transportation networks. In: Fifth world conference on transport research, Yokohama, 1989

    Google Scholar 

  • Ran B, Boyce DE, LeBlanc LJ (1993) A new class of instantaneous dynamic user-optimal traffic assignment models. Oper Res 41(1):192–202

    Article  MATH  Google Scholar 

  • Ran B, Hall RW, Boyce DE (1996) A link-based variational inequality model for dynamic departure time/route choice. Transp Res Methodol 30B(1):31–46

    Article  Google Scholar 

  • Randle J (1979) A convergence probabilistic road assignment model. Traffic Eng Control 11:519–521

    Google Scholar 

  • Richards PI (1956) Shock waves on the highway. Oper Res 4:42–51

    Article  MathSciNet  Google Scholar 

  • Rilett L, Aerde V (1993) Modeling route guidance using the integration model. In: Proceedings of the pacific rim trans tech conference, Seattle, 1993 and Proceedings of the ASCE international conference on applications of advanced technologies in transportation engineering. ASCE, New York

    Google Scholar 

  • Rilett L, Van Aerde M (1991a) Routing based on anticipated travel times. In: Proceedings of the 2nd international conference on applications of advanced technologies in transportation engineering, Minneapolis. ASCE, New York

    Google Scholar 

  • Rilett LR, van Aerde MW (1991b) Modelling distributed realtime route guidance strategies in a traffic network that exhibits the Braess paradox. In: Vehicle navigation & information systems conference proceedings part 2 (of 2). Dearborn, 1991. Proceedings society of automotive engineers n P-253. SAE, Warrendale

    Google Scholar 

  • Rilett LR, Van Aerde M et al (1991) Simulating the TravTek route guidance logic using the integration traffic model. In: Vehicle navigation & information systems conference proceedings part 2 (of 2). Dearborn, 1991. In: Proceedings society of automotive engineers n P-253, SAE. Warrendale

    Google Scholar 

  • Rouphail NM (1988) Delay models for mixed platoon and secondary flows. J Transp Eng 114(2):131–152

    Article  Google Scholar 

  • Rouphail NM, Akcelik R (1992) Preliminary model of queue interaction at signalised paired intersections. In: Proceedings of the 16th ARRB conference, Perth, 9–12 November 1992. Congestion management proceedings conference of the Australian Road Research Board. Australian Road Research Board, Nunawading

    Google Scholar 

  • Schofer AJKFSKJL (1993) Stated preferences for investigating commuters’ diversion propensity. Transportation 20(2):107–127

    Article  Google Scholar 

  • Sheffi Y (1985) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Sheffi Y, Powell W (1981) A comparison of stochastic and deterministic traffic assignment over congested networks. Transp Res 15B:65–88

    Google Scholar 

  • Shen W, Nie Y et al (2006) Path-based system optimal dynamic traffic assignment models: formulations and solution methods. In: IEEE intelligent transportation systems conference IEEE, Toronto, pp 1298–1303

    Google Scholar 

  • Sherali HD, Arora N, Hobeika AG (1997) Parameter optimization methods for estimating dynamic origin-destination triptables. Transp Res Part B Methodol 31B(2):141–157

    Article  Google Scholar 

  • Sherali HD, Desai J et al (2006) A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times. Transp Res Part B 40:857–871

    Article  Google Scholar 

  • Simon HA (1947) Administrative behavior. Am Polit Sci Rev 41(6)

    Google Scholar 

  • Simon HA (1955) A behavioral model of rational choice. Q J Econ 69(1):99–118

    Article  Google Scholar 

  • Simon H (1957) Models of man, social and rational. Adm Sci Q 2(2)

    Google Scholar 

  • Sivanandan R, Dion F et al (2003) Effect of variable-message signs in reducing railroad crossing impacts. Transp Res Rec 1844:85–93

    Article  Google Scholar 

  • Smock R (1962) An iterative assignment approach to capacity-restraint on arterial networks. Bull Highw Res Board 347:226–257

    Google Scholar 

  • Srinivasan KK, Mahmassani HS (2000) Modeling inertia and compliance mechanisms in route choice behavior under realtime information. Transp Res Rec 1725:45–53

    Article  Google Scholar 

  • Steinberg R, Zangwill WI (1983) The prevalence of braess’ paradox. Transp Sci 17:301–318

    Article  Google Scholar 

  • Stewart N (1980) Equilibrium versus system-optimal flow: some examples. Transp Res 14A:81–84

    Article  Google Scholar 

  • Talaat H, Abdulhai B (2006) Modeling driver psychological deliberation during dynamic route selection processes. In: 2006 IEEE intelligent transportation systems conference, Toronto, pp 695–700

    Google Scholar 

  • Tarko A, Rouphail N et al (1993) Overflow delay at a signalized intersection approach influenced by an upstream signal. An analytical investigation. Transp Res Rec 1398:82–89

    Google Scholar 

  • Van Aerde M (1985) Modelling of traffic flows, assignment and queueing in integrated freeway/traffic signal networks. In: Civil engineering. PhD, University of Waterloo, Waterloo

    Google Scholar 

  • Van Aerde M, Rakha H (1989) Development and potential of system optimized route guidance strategies. In: IEEE vehicle navigation and information systems conference IEEE, Toronto, pp 304–309

    Google Scholar 

  • Van Aerde M, Rakha H (2007) INTEGRATION © Release 2.30 for Windows: user’s guide vol I: fundamental model features. M Van Aerde & Assoc, Ltd, Blacksburg

    Google Scholar 

  • Van Aerde M, Yagar S (1988a) Dynamic integrated freeway/traffic signal networks: a routeing-based modelling approach. Transp Res 22A(6):445–453

    Google Scholar 

  • Van Aerde M, Yagar S (1988b) Dynamic integrated freeway/traffic signal networks: problems and proposed solutions. Transp Res 22A(6):435–443

    Article  Google Scholar 

  • Van Aerde, M, Hellinga BR et al (1993) QUEENSOD: a method for estimating time varying origin-destination demands for freeway corridors/networks. In: 72nd annual meeting of the transportation research board, Washington, DC

    Google Scholar 

  • Van Aerde M, Rakha H et al (2003) Estimation of origin-destination matrices: relationship between practical and theoretical considerations. Transp Res Rec 1831:122–130

    Article  Google Scholar 

  • Van Der Zijpp NJ, De Romph E (1997) A dynamic traffic forecasting application on the Amsterdam beltway. Int J Forecast 13:87–103

    Article  Google Scholar 

  • Van Vliet D (1976) Road assignment. Transp Res 10:137–157

    Article  Google Scholar 

  • Van Vliet D (1982) SATURN a modern assignment model. Traffic Eng Control 12:578–581

    Google Scholar 

  • Van Zuylen JH, Willumsen LG (1980) The most likely trip matrix estimated from traffic counts. Transp Res 14B:281–293

    Article  Google Scholar 

  • Walker N, Fain WB et al (1997) Aging and decision making: driving-related problem solving. J Hum Factors Ergon Soc 39(3):438–444(7)

    Article  Google Scholar 

  • Waller ST (2000) Optimization and control of stochastic dynamic transportation systems: formulations, solution methodologies, and computational experience. PhD, Northwestern University, Evanston

    Google Scholar 

  • Waller ST, Ziliaskopoulos AK (2006) A chance-constrained based stochastic dynamic traffic assignment model: analysis, formulation and solution algorithms. Transp Res Part C Emerg Technol 14(6):418–427

    Article  Google Scholar 

  • Wardrop J (1952) Some theoretical aspects of road traffic research. Institute of Civil Engineers, pp 325–362

    Google Scholar 

  • Webster F (1958) Traffic signal settings. HMsSO Road Research Laboratory, London

    Google Scholar 

  • Webster FV, Cobbe BM (1966) Traffic signals. HMsSO Road Research Laboratory, London

    Google Scholar 

  • Wie BW (1991) Dynamic analysis of user-optimized network flows with elastic travel demand. Transp Res Rec 1328:81–87

    Google Scholar 

  • Willumsen LG (1978) Estimation of an O-D matrix from traffic counts: a review. Institute for Transport Studies, Working paper no 99, Leeds University, Leeds

    Google Scholar 

  • Wilson AG (1970) Entropy in urban and regional modelling. Pion, London

    Google Scholar 

  • Wu J, Chang G-L (1996) Estimation of time-varying origin-destination distributions with dynamic screenline flows. Transp Res Part B Methodol 30B(4):277–290

    Article  MathSciNet  Google Scholar 

  • Yagar S (1971) Dynamic traffic assignment by individual path minimization and queueing. Transp Res 5:179–196

    Article  Google Scholar 

  • Yagar S (1974) Dynamic traffic assignment by individual path minimization and queueing. Transp Res 5:179–196

    Article  Google Scholar 

  • Yagar S (1975) CORQ a model for predicting flows and queues in a road corridor. Transp Res 553:77–87

    Google Scholar 

  • Yagar S (1976) Measures of the sensitivity and effectiveness of the CORQ traffic model. Transp Res Rec 562:38–48

    Google Scholar 

  • Yang T-H (2001) Deployable stable traffic assignment models for control in dynamic traffic networks: a dynamical systems approach. PhD, Purdue University, West Lafayette

    Google Scholar 

  • Yang Q, Ben-Akiva ME (2000) Simulation laboratory for evaluating dynamic traffic management systems. Transp Res Rec 1710:122–130

    Article  Google Scholar 

  • Zhou X, Mahmassani HS (2006) Dynamic origin-destination demand estimation using automatic vehicle identification data. IEEE Trans Intell Transp Syst 7(1):105–114

    Article  Google Scholar 

  • Zhou Y, Sachse T (1997) A few practical problems on the application of OD-estimation in motorway networks. TOP 5(1):61–80

    Article  MathSciNet  MATH  Google Scholar 

  • Ziliaskopoulos AK (2000) A linear programming model for the single destination system optimum dynamic traffic assignment problem. Transp Sci 34(1):37–49

    Article  MATH  Google Scholar 

  • Ziliaskopoulos AK, Waller ST (2000) An Internet-based geographic information system that integrates data, models and users for transportation applications. Transp Res Part C Emerg Technol 8C:1–6

    Google Scholar 

  • Ziliaskopoulos A, Wardell W (2000) Intermodal optimum path algorithm for multimodal networks with dynamic arc travel times and switching delays. Eur J Oper Res 125(3):486–502

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

Term Abbreviations

ANN:

Artificial Neural Networks

ATIS:

Advanced Traveler Information System

AVI:

Automatic Vehicle Identification

AVL:

Automatic Vehicle Location

DTA:

Dynamic Traffic Assignment

FHWA:

Federal Highway Administration

GA:

Genetic Algorithm

GPS:

Global Positioning System

HCM:

Highway Capacity Manual

HOV:

High Occupancy Vehicle

ITS:

Intelligent Transportation Systems

LDV:

Light Duty Vehicle

LMC:

Link Marginal Cost

LP:

Linear Programming

MOE:

Measure of Effectiveness

NLP:

Non-Linear Programming

O-D:

Origin – Destination

PMC:

Path Marginal Cost

SO:

System Optimum

SOV:

Single Occupancy Vehicle

TT:

Travel Time

UE:

User Equilibrium

VMS:

Variable Message Sign

Variable Definitions

v i :

Traffic volume on route i

N :

Set of network nodes

A :

Set of network arcs (links)

R :

Set of origin centroids

S :

Set of destination centroids

k rs :

Set of paths connecting O-D pair (rs); rR, sS

x a :

Flow on arc (a)

x b :

Flow on arc (b)

t a :

Travel time on arc (a)

t b :

Travel time on arc (b)

\( {\boldsymbol{f}}_{\boldsymbol{k}}^{\boldsymbol{rs}} \) :

Flow on path (k) connecting O-D pair (r-s)

\( {\boldsymbol{f}}_{\boldsymbol{l}}^{\boldsymbol{mn}} \) :

Flow on path (l) connecting O-D pair (m-n)

\( {\boldsymbol{c}}_{\boldsymbol{k}}^{\boldsymbol{rs}} \) :

Travel time on path (k) connecting O-D pair (r-s)

q rs :

Trip rate between origin (r) and destination (s)

\( {\boldsymbol{\delta}}_{\boldsymbol{a},\boldsymbol{k}}^{\boldsymbol{rs}} \) :

Indicator variable, = 1 if arc (a) is on path (k) between O-D pair (r-s), and 0 otherwise

x :

Vector of flows on all arcs, D (…, xa,…)

t :

Vector of travel times on all arcs, D (…, ta,…)

f rs :

Vector of flows on all paths connecting O-D pair r-s, = \( \left(\dots, {f}_k^{rs},\dots \right) \)

f :

Matrix of flows on all paths connecting all O-D pairs, = (…, f rs,…)

c rs :

Vector of travel times on all paths connecting O-D pair r-s, = (…, crs,…)

c :

Matrix of travel times on all paths connecting all O-D pairs, D (…, crs,…)

q :

Origin-destination matrix (with elements = qrs)

Δ rs :

Link-path incidence matrix (with \( {\delta}_{a,k}^{rs} \) elements) for O-D pair r-s, as discussed below

Δ :

Matrix of link-path incidence matrices (for all O-D pairs), = (…, Δrs, …)

z :

Objective function

L :

Lagrange (transformation of the) objective function

u rs :

Dual variable associated with the flow conservation constraint for O-D pair (r-s)

t i, k :

Observed average travel time along link i within the kth sampling interval

t ˜ I, k :

Smoothed average travel time along link i in the kth sampling interval

\( {\boldsymbol{s}}_{\boldsymbol{i},\boldsymbol{k}}^2 \) :

Variance of the observed travel times relative to the observed average travel time in the kth sampling interval

\( {\tilde{\boldsymbol{s}}}_{\boldsymbol{i},\boldsymbol{k}}^2 \) :

Variance of the observed travel times relative to the smoothed travel time in the kth sampling interval

n i, k :

Number of valid travel time readings on link i in the kth sampling interval

α :

Exponential smoothing factor that varies as a function of the number of observations ni, k within the sampling interval

β :

Constant that varies between 0 and 1

T ij :

Number of trips between production zone i and attraction zone j

P i :

Number of trip productions from the origin zone

A j :

Number of trip attractions to the destination zone

F ij :

Impedance factor between production zone i and attraction zone j

K ij :

Socio-economic adjustment factor for trips between production zone i and attraction zone j

c ij :

Generalized cost of inter-zonal travel between production zone i and attraction zone j

t ij :

Prior information on the number of trips between production zone i and attraction zone j

Va :

Traffic flow on link (a)

\( {\boldsymbol{V}}_{\boldsymbol{a}}^{\prime } \) :

Complementary traffic flow on link (a)

\( {\boldsymbol{p}}_{\boldsymbol{ij}}^{\boldsymbol{a}} \) :

Probability of traffic flow between origin (i) and destination (j) to use link (a)

T r :

Total demand departing during time-slice (r)

t r :

Total seed matrix demand departing during time-slice (r)

T rij :

Traffic demand departing during time-slice (r) traveling between origin (i) and destination (j)

t rij :

Seed traffic demand departing during time-slice (r) traveling between origin (i) and destination (j)

l rij :

Lagrange multiplier for departure time-slice, origin, and destination combination (rij)

V sa :

Observed volume on link (a) during time-slice (s)

\( {\boldsymbol{p}}_{\boldsymbol{rij}}^{\boldsymbol{sa}} \) :

Probability of (a) demand between origin (i) and destination (j) during time-slice (r) is observed on link (a) during time-slice (s)

d ( t i ) :

Vehicle delay at time (ti)

u ( t i ) :

Vehicle instantaneous speed at time (ti)

u f :

Free-flow speed

S ( t i ) :

Vehicle full and partial stops at time (ti)

MOE e :

Instantaneous fuel consumption or emission rate

\( {\boldsymbol{K}}_{\boldsymbol{i},\boldsymbol{j}}^{\boldsymbol{e}} \) :

Model regression coefficient for MOE (e) at speed power (i) and acceleration power (j)

\( {\boldsymbol{L}}_{\boldsymbol{i},\boldsymbol{j}}^{\boldsymbol{e}} \) :

Model regression coefficient for MOE (e) at speed power (i) and acceleration power (j) for positive accelerations

\( {\boldsymbol{M}}_{\boldsymbol{i},\boldsymbol{j}}^{\boldsymbol{e}} \) :

Model regression coefficient for MOE (e) at speed power (i) and acceleration power (j) for negative accelerations

u :

Vehicle instantaneous speed

a :

Vehicle instantaneous acceleration rate

q :

Traffic stream flow (veh/h)

k :

Traffic stream density (veh/km)

u :

Traffic stream space-mean speed (km/h)

u f :

Expected traffic stream free-flow speed (km/h)

u c :

Expected traffic stream speed-at-capacity (km/h)

k j :

Expected traffic stream jam density (veh/km)

q c :

Expected traffic stream capacity (veh/km)

c 1 :

Model coefficient (km/veh)

c 3 :

Model constant (h/km2 -veh)

c 2 :

Model constant (h-1)

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rakha, H., Tawfik, A. (2009). Dynamic Traffic Routing, Assignment, and Assessment of Traffic Networks. In: Kerner, B. (eds) Complex Dynamics of Traffic Management. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8763-4_562

Download citation

Publish with us

Policies and ethics