Skip to main content

Chaotic Behavior of Cellular Automata

  • Reference work entry
  • First Online:
Cellular Automata
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media LLC 2017

Glossary

Equicontinuity:

All points are equicontinuity points (in compact settings).

Equicontinuity point:

A point for which the orbits of nearby points remain close.

Expansivity:

From two distinct points, orbits eventually separate.

Injectivity:

The next state function is injective.

Linear CA:

A CA with additive local rule.

Regularity:

The set of periodic points is dense.

Sensitivity to initial conditions:

For any point x there exist arbitrary close points whose orbits eventually separate from the orbit of x.

Strong transitivity:

There always exist points which eventually move from any arbitrary neighborhood to any point.

Surjectivity:

The next state function is surjective.

Topological mixing:

There always exist points which definitely move from any arbitrary neighborhood to any other.

Transitivity:

There always exist points which eventually move from any arbitrary neighborhood to any other.

Definition of the Subject

A discrete time dynamical system (DTDS) is a pair 〈X, F〉 where Xis...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  • Acerbi L, Dennunzio A, Formenti E (2007) Shifting and lifting of cellular automata. In: Third conference on computability in Europe, CiE 2007, Siena, Italy, 18–23 June 2007. Lecture notes in computer science, vol 4497. Springer, Berlin, pp 1–10

    Google Scholar 

  • Adler R, Konheim A, McAndrew J (1965) Topological entropy. Trans Am Math Soc 114:309–319

    Article  MathSciNet  Google Scholar 

  • Akin E, Auslander E, Berg K (1996) When is a transitive map chaotic? In: Bergelson V, March P, Rosenblatt J (eds) Convergence in ergodic theory and probability. de Gruyter, Berlin, pp 25–40

    Google Scholar 

  • Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J Comput Syst Sci 6:448–464

    Article  MathSciNet  Google Scholar 

  • Assaf D IV, Gadbois S (1992) Definition of chaos. Am Math Mon 99:865

    Article  MathSciNet  Google Scholar 

  • Auslander J, Yorke JA (1980) Interval maps, factors of maps and chaos. Tohoku Math J 32:177–188

    Article  MathSciNet  Google Scholar 

  • Banks J, Brooks J, Cairns G, Davis G, Stacey P (1992) On Devaney’s definition of chaos. Am Math Mon 99:332–334

    Article  MathSciNet  Google Scholar 

  • Blanchard F, Cervelle J, Formenti E (2005) Some results about chaotic behavior of cellular automata. Theor Comp Sci 349:318–336

    Article  MathSciNet  Google Scholar 

  • Blanchard F, Formenti E, Kurka K (1998) Cellular automata in the Cantor, Besicovitch and Weyl topological spaces. Compl Syst 11:107–123

    MathSciNet  MATH  Google Scholar 

  • Blanchard F, Glasner E, Kolyada S, Maass A (2002) On Li-Yorke pairs. J Reine Angew Math 547:51–68

    MathSciNet  MATH  Google Scholar 

  • Blanchard F, Kurka P, Maass A (1997) Topological and measure-theoretic properties of one-dimensional cellular automata. Phys D 103:86–99

    Article  MathSciNet  Google Scholar 

  • Blanchard F, Maass A (1997) Dynamical properties of expansive one- sided cellular automata. Israel J Math 99:149–174

    Article  MathSciNet  Google Scholar 

  • Blanchard F, Tisseur P (2000) Some properties of cellular automata with equicontinuity points. Ann Inst Henri Poincaré Probab Stat 36:569–582

    Article  MathSciNet  Google Scholar 

  • Boyle M, Kitchens B (1999) Periodic points for cellular automata. Indag Math 10:483–493

    Article  MathSciNet  Google Scholar 

  • Boyle M, Maass A (2000) Expansive invertible one-sided cellular automata. J Math Soc Jpn 54(4):725–740

    Article  Google Scholar 

  • Cattaneo G, Dennunzio A, Margara L (2002) Chaotic subshifts and related languages applications to one-dimensional cellular automata. Fundam Inform 52:39–80

    MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Dennunzio A, Margara L (2004) Solution of some conjectures about topological properties of linear cellular automata. Theor Comp Sci 325:249–271

    Article  MathSciNet  Google Scholar 

  • Cattaneo G, Finelli M, Margara L (2000) Investigating topological chaos by elementary cellular automata dynamics. Theor Comp Sci 244:219–241

    Article  MathSciNet  Google Scholar 

  • Cattaneo G, Formenti E, Manzini G, Margara L (2000) Ergodicity, transitivity, and regularity for linear cellular automata. Theor Comp Sci 233:147–164. A preliminary version of this paper has been presented to the Symposium of Theoretical Computer Science (STACS’97). LNCS, vol 1200

    Article  MathSciNet  Google Scholar 

  • Cattaneo G, Formenti E, Margara L, Mazoyer J (1997) A shift-invariant metric on SZ inducing a non-trivial topology. In: Mathematical Foundations of Computer Science 1997. Lecture notes in computer science, vol 1295. Springer, Berlin, pp 179–188

    Chapter  Google Scholar 

  • D’Amico M, Manzini G, Margara L (2003) On computing the entropy of cellular automata. Theor Comp Sci 290:1629–1646

    Article  MathSciNet  Google Scholar 

  • Denker M, Grillenberger C, Sigmund K (1976) Ergodic theory on compact spaces. Lecture notes in mathematics, vol 527. Springer, Berlin

    Google Scholar 

  • Devaney RL (1989) An Introduction to chaotic dynamical systems, 2nd edn. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Di Lena P (2006) Decidable properties for regular cellular automata. In: Navarro G, Bertolossi L, Koliayakawa Y (eds) Proceedings of fourth IFIP international conference on theoretical computer science. Springer, Santiago de Chile, pp 185–196

    Google Scholar 

  • Durand B, Formenti E, Varouchas G (2003) On undecidability of equicontinuity classification for cellular automata. Discrete Math Theor Comp Sci AB:117–128

    MathSciNet  MATH  Google Scholar 

  • Edgar GA (1990) Measure, topology and fractal geometry. Undergraduate texts in Mathematics. Springer, New York

    Book  Google Scholar 

  • Formenti E (2003) On the sensitivity of additive cellular automata in Besicovitch topologies. Theor Comp Sci 301(1–3):341–354

    Article  MathSciNet  Google Scholar 

  • Formenti E, Grange A (2003) Number conserving cellular automata II: dynamics. Theor Comp Sci 304(1–3):269–290

    Article  MathSciNet  Google Scholar 

  • Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation. Math Syst Theor Theor Comp Syst 1(1):1–49

    Article  MathSciNet  Google Scholar 

  • Glasner E, Weiss B (1993) Sensitive dependence on initial condition. Nonlinearity 6:1067–1075

    Article  MathSciNet  Google Scholar 

  • Guckenheimer J (1979) Sensitive dependence to initial condition for one-dimensional maps. Commun Math Phys 70:133–160

    Article  MathSciNet  Google Scholar 

  • Haeseler FV, Peitgen HO, Skordev G (1992) Linear cellular automata, substitutions, hierarchical iterated system. In: Fractal geometry and computer graphics. Springer, Berlin

    MATH  Google Scholar 

  • Haeseler FV, Peitgen HO, Skordev G (1993) Multifractal decompositions of rescaled evolution sets of equivariant cellular automata: selected examples. Technical report, Institut für Dynamische Systeme, Universität Bremen

    Google Scholar 

  • Haeseler FV, Peitgen HO, Skordev G (1995) Global analysis of self-similarity features of cellular automata: selected examples. Phys D 86:64–80

    Article  MathSciNet  Google Scholar 

  • Hedlund GA (1969) Endomorphism and automorphism of the shift dynamical system. Math Sy Theor 3:320–375

    Article  MathSciNet  Google Scholar 

  • Hurd LP, Kari J, Culik K (1992) The topological entropy of cellular automata is uncomputable. Ergodic. Theor Dyn Sy 12:255–265

    MATH  Google Scholar 

  • Hurley M (1990) Ergodic aspects of cellular automata. Ergod Theor Dyn Sy 10:671–685

    MathSciNet  MATH  Google Scholar 

  • Ito M, Osato N, Nasu M (1983) Linear cellular automata over zm. J Comp Sy Sci 27:127–140

    MATH  Google Scholar 

  • Kannan V, Nagar A (2002) Topological transitivity for discrete dynamical systems. In: Misra JC (ed) Applicable mathematics in golden age. Narosa Pub, New Delhi

    Google Scholar 

  • Kari J (1994a) Reversibility and surjectivity problems of cellular automata. J Comp Sy Sci 48:149–182

    Article  MathSciNet  Google Scholar 

  • Kari J (1994b) Rice’s theorem for the limit, set of cellular automata. Theor Comp Sci 127(2):229–254

    Article  MathSciNet  Google Scholar 

  • Knudsen C (1994) Chaos without nonperiodicity. Am Math Mon 101:563–565

    Article  MathSciNet  Google Scholar 

  • Kolyada S, Snoha L (1997) Some aspect of topological transitivity – a survey. Grazer Math Ber 334:3–35

    MathSciNet  MATH  Google Scholar 

  • Kurka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergo Theor Dyn Sy 17:417–433

    Article  MathSciNet  Google Scholar 

  • Kurka P (2004) Topological and symbolic dynamics. Cours Spécialisés, vol 11. Société Mathématique de France, Paris

    Google Scholar 

  • Li TY, Yorke JA (1975) Period three implies chaos. Am Math Mon 82:985–992

    Article  MathSciNet  Google Scholar 

  • Manzini G, Margara L (1999) A complete and efficiently computable topological classification of D-dimensional linear cellular automata over Zm. Theor Comp Sci 221(1–2):157–177

    Article  Google Scholar 

  • Margara L (1999) On some topological properties of linear cellular automata. Kutylowski M, Pacholski L, Wierzbicki T Mathematical foundations of computer science 1999 (MFCS99). Lecture notes in computer science, vol 1672. Springer, Berlin, pp 209–219

    Google Scholar 

  • Moothathu TKS (2005) Homogenity of surjective cellular automata. Discret Contin Dyn Syst 13:195202

    Article  Google Scholar 

  • Morris G, Ward T (1998) Entropy bounds for endomorphisms commuting with k actions. Israel J Math 106:1–12

    Article  MathSciNet  Google Scholar 

  • Nasu M (1995) Textile systems for endomorphisms and automorphisms of the shift. Memoires of the American Mathematical Society, vol 114. American Mathematical Society, Providence

    Article  MathSciNet  Google Scholar 

  • Pesin YK (1997) Dimension theory in dynamical systems. Chicago lectures in Mathematics. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Shereshevsky MA (1993) Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms. Indag Math 4:203–210

    Article  MathSciNet  Google Scholar 

  • Shereshevsky MA, Afraimovich VS (1993) Bipermutative cellular automata are topologically conjugate to the one-sided Bernoulli shift. Random Comput Dynam 1(1):91–98

    MathSciNet  MATH  Google Scholar 

  • Sutner K (1999) Linear cellular automata and de Bruijn automata. In: Delorme M, Mazoyer J (eds) Cellular automata, a parallel model, number 460 in mathematics and its applications. Kluwer, Dordrecht

    Google Scholar 

  • Takahashi S (1992) Self-similarity of linear cellular automata. J Comput Syst Sci 44:114–140

    Article  MathSciNet  Google Scholar 

  • Vellekoop M, Berglund R (1994) On intervals, transitivity = chaos. Am Math Mon 101:353–355

    MathSciNet  MATH  Google Scholar 

  • Walters P (1982) An introduction to ergodic theory. Springer, Berlin

    Book  Google Scholar 

  • Weiss B (1971) Topological transitivity and ergodic measures. Math Syst Theor 5:71–75

    Article  MathSciNet  Google Scholar 

  • Willson S (1984) Growth rates and fractional dimensions in cellular automata. Phys D 10:69–74

    Article  MathSciNet  Google Scholar 

  • Willson S (1987a) Computing fractal dimensions for additive cellular automata. Phys D 24:190–206

    Article  MathSciNet  Google Scholar 

  • Willson S (1987b) The equality of fractional dimensions for certain cellular automata. Phys D 24:179–189

    Article  MathSciNet  Google Scholar 

  • Wolfram S (1986) Theory and applications of cellular automata. World Scientific, Singapore, Singapore

    MATH  Google Scholar 

Books and Reviews

  • Akin E (1993) The general topology of dynamical systems. Graduate studies in mathematics, vol 1. American Mathematical Society, Providence

    Google Scholar 

  • Akin E, Kolyada S (2003) Li-Yorke sensitivity. Nonlinearity 16:1421–1433

    Article  MathSciNet  Google Scholar 

  • Block LS, Coppel WA (1992) Dynamics in one dimension. Springer, Berlin

    Book  Google Scholar 

  • Katok A, Hasselblatt B (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kitchens PB (1997) Symbolic dynamics: one-sided, two-sided and countable state Markov shifts. Universitext Springer, Berlin

    MATH  Google Scholar 

  • Kolyada SF (2004) Li-Yorke sensitivity and other concepts of chaos. Ukr Math J 56(8):1242–1257

    Article  MathSciNet  Google Scholar 

  • Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambidge University Press, Cambidge

    Book  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Interlink/MIUR project “Cellular Automata:

Topological Properties, Chaos and Associated Formal Languages”, by the ANR Blanc Project “Sycomore” and by the PRIN/MIUR project “Formal Languages and Automata: Mathematical and Applicative Aspects”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Cervelle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cervelle, J., Dennunzio, A., Formenti, E. (2018). Chaotic Behavior of Cellular Automata. In: Adamatzky, A. (eds) Cellular Automata. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8700-9_65

Download citation

Publish with us

Policies and ethics