Skip to main content

Cellular Automata with Memory

  • Reference work entry
  • First Online:

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer-Verlag 2009

Glossary

Cellular automata:

Cellular Automata (CA) are discrete, spatially explicit extended dynamic systems composed of adjacent cells characterized by an internal state whose value belongs to a finite set. The updating of these states is made simultaneously according to a common local transition rule involving only a neighborhood of each cell.

Memory:

Standard CA are ahistoric (memoryless): i.e., the new state of a cell depends on the neighborhood configuration only at the preceding time step. The standard framework of CA can be extended by the consideration of all past states (history) in the application of the CA rules by implementing memory capabilities in cells and links when topology is dynamic.

Definition

Cellular Automata (CA) are discrete, spatially explicit extended dynamic systems. A CA system is composed of adjacent cells characterized by an internal state whose value belongs to a finite set. The updating of these states is made simultaneously according to a common local...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

Primary Literature

  • Adamatzky A (1994) Identification of cellular automata. Taylor and Francis, London

    MATH  Google Scholar 

  • Adamatzky A (2001) Computing in nonlinear media and automata collectives. IoP Publishing, London

    MATH  Google Scholar 

  • Adamatzky A, Holland O (1998) Phenomenology of excitation in 2-D cellular automata and swarm systems. Chaos, Solitons Fractals 9:1233–1265

    Article  MathSciNet  Google Scholar 

  • Aicardi F, Invernizzi S (1982) Memory effects in discrete dynamical systems. Int J Bifurc Chaos 2(4):815–830

    Article  MathSciNet  Google Scholar 

  • Alonso-Sanz R (1999) The historic prisoner’s dilemma. Int J Bifurc Chaos 9(6):1197–1210

    Article  MathSciNet  Google Scholar 

  • Alonso-Sanz R (2003) Reversible cellular automata with memory. Phys D 175:1–30

    Article  MathSciNet  Google Scholar 

  • Alonso-Sanz R (2004a) One-dimensional, r = 2 cellular automata with memory. Int J Bifurc Chaos 14:3217–3248

    Article  MathSciNet  Google Scholar 

  • Alonso-Sanz R (2004b) One-dimensional, r = 2 cellular automata with memory. Int J BifurcChaos 14:3217–3248

    MathSciNet  MATH  Google Scholar 

  • Alonso-Sanz R (2005a) Phase transitions in an elementary probabilistic cellular automaton with memory. Phys A 347:383–401

    Article  Google Scholar 

  • Alonso-Sanz R (2005b) The Paulov versus Anti-Paulov contest with memory. Int J Bifurc Chaos 15(10):3395–3407

    Article  MathSciNet  Google Scholar 

  • Alonso-Sanz R (2006a) A structurally dynamic cellular automaton with memory in the triangular tessellation. Complex Syst 17(1):1–15

    MathSciNet  MATH  Google Scholar 

  • Alonso-Sanz R (2006b) The beehive cellular automaton with memory. J Cell Autom 1:195–211

    MathSciNet  MATH  Google Scholar 

  • Alonso-Sanz R (2007a) Reversible structurally dynamic cellular automata with memory: a simple example. J Cell Autom 2:197–201

    MathSciNet  MATH  Google Scholar 

  • Alonso-Sanz R (2007b) A structurally dynamic cellular automaton with memory. Chaos, Solitons Fractals 32:1285–1295

    Article  MathSciNet  Google Scholar 

  • Alonso-Sanz R, Adamatzky A (2008) On memory and structurally dynamism in excitable cellular automata with defensive inhibition. Int J Bifurc Chaos 18(2):527–539

    Article  Google Scholar 

  • Alonso-Sanz R, Cardenas JP (2007) On the effect of memory in Boolean networks with disordered dynamics: the K = 4 case. Int J Modrn Phys C 18:1313–1327

    Article  Google Scholar 

  • Alonso-Sanz R, Martin M (2002a) One-dimensional cellular automata with memory: patterns starting with a single site seed. Int J Bifurc Chaos 12:205–226

    Article  Google Scholar 

  • Alonso-Sanz R, Martin M (2002b) Two-dimensional cellular automata with memory: patterns starting with a single site seed. Int J Mod Phys C 13:49–65

    Article  MathSciNet  Google Scholar 

  • Alonso-Sanz R, Martin M (2003) Cellular automata with accumulative memory: legal rules starting from a single site seed. Int J Mod Phys C 14:695–719

    Article  Google Scholar 

  • Alonso-Sanz R, Martin M (2004a) Elementary probabilistic cellular automata with memory in cells. In: Sloot PMA et al (eds) LNCS, vol 3305. Springer, Berlin, pp 11–20

    Google Scholar 

  • Alonso-Sanz R, Martin M (2004b) Elementary cellular automata with memory. Complex Syst 14:99–126

    MathSciNet  MATH  Google Scholar 

  • Alonso-Sanz R, Martin M (2004c) Three-state one-dimensional cellular automata with memory. Chaos, Solitons Fractals 21:809–834

    Article  MathSciNet  Google Scholar 

  • Alonso-Sanz R, Martin M (2005) One-dimensional cellular automata with memory in cells of the most frequent recent value. Complex Syst 15:203–236

    MathSciNet  MATH  Google Scholar 

  • Alonso-Sanz R, Martin, M (2006a) A structurally dynamic cellular automaton with memory in the hexagonal tessellation. In: El Yacoubi S, Chopard B, Bandini S (eds) LNCS, vol 4774. Springer, Berlin, pp 30–40

    MATH  Google Scholar 

  • Alonso-Sanz R, Martin M (2006b) Elementary cellular automata with elementary memory rules in cells: the case of linear rules. J Cell Autom 1:70–86

    MathSciNet  MATH  Google Scholar 

  • Alonso-Sanz R, Martin M (2006c) Memory boosts cooperation. Int J Mod Phys C 17(6):841–852

    Article  Google Scholar 

  • Alonso-Sanz R, Martin MC, Martin M (2000) Discounting in the historic prisoner’s dilemma. Int J Bifurc Chaos 10(1):87–102

    Article  MathSciNet  Google Scholar 

  • Alonso-Sanz R, Martin MC, Martin M (2001a) Historic life. Int J Bifurc Chaos 11(6):1665–1682

    Article  Google Scholar 

  • Alonso-Sanz R, Martin MC, Martin M (2001b) The effect of memory in the spatial continuous-valued prisoner’s dilemma. Int J Bifurc Chaos 11(8):2061–2083

    Article  Google Scholar 

  • Alonso-Sanz R, Martin MC, Martin M (2001c) The historic strategist. Int J Bifurc Chaos 11(4):943–966

    Article  Google Scholar 

  • Alonso-Sanz R, Martin MC, Martin M (2001d) The historic-stochastic strategist. Int J Bifurc Chaos 11(7):2037–2050

    Article  Google Scholar 

  • Alvarez G, Hernandez A, Hernandez L, Martin A (2005) A secure scheme to share secret color images. Comput Phys Commun 173:9–16

    Article  Google Scholar 

  • Fredkin E (1990) Digital mechanics. An informal process based on reversible universal cellular automata. Physica D 45:254–270

    Article  MathSciNet  Google Scholar 

  • Grössing G, Zeilinger A (1988) Structures in quantum cellular automata. Physica B 15:366

    Article  MathSciNet  Google Scholar 

  • Hauert C, Schuster HG (1997) Effects of increasing the number of players and memory steps in the iterated prisoner’s dilemma, a numerical approach. Proc R Soc Lond B 264:513–519

    Article  Google Scholar 

  • Hooft G (1988) Equivalence relations between deterministic and quantum mechanical systems. J Stat Phys 53(1/2):323–344

    Article  MathSciNet  Google Scholar 

  • Ilachinski A (2000) Cellular automata. World Scientific, Singapore

    MATH  Google Scholar 

  • Ilachinsky A, Halpern P (1987) Structurally dynamic cellular automata. Complex Syst 1:503–527

    MathSciNet  MATH  Google Scholar 

  • Kaneko K (1986) Phenomenology and characterization of coupled map lattices. In: Dynamical systems and sigular phenomena. World Scientific, Singapore

    Google Scholar 

  • Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Lindgren K, Nordahl MG (1994) Evolutionary dynamics of spatial games. Physica D 75:292–309

    Article  Google Scholar 

  • Love PJ, Boghosian BM, Meyer DA (2004) Lattice gas simulations of dynamical geometry in one dimension. Phil Trans R Soc Lond A 362:1667

    Article  MathSciNet  Google Scholar 

  • Margolus N (1984) Physics-like models of computation. Physica D 10:81–95

    Article  MathSciNet  Google Scholar 

  • Martin del Rey A, Pereira Mateus J, Rodriguez Sanchez G (2005) A secret sharing scheme based on cellular automata. Appl Math Comput 170(2):1356–1364

    MathSciNet  MATH  Google Scholar 

  • Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826

    Article  Google Scholar 

  • Nowak MA, Sigmund K (1993) A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature 364:56–58

    Article  Google Scholar 

  • Requardt M (1998) Cellular networks as models for Plank-scale physics. J Phys A 31:7797

    Article  Google Scholar 

  • Requardt M (2006a) The continuum limit to discrete geometries. arxiv.org/abs/math-ps/0507017

  • Requardt M (2006b) Emergent properties in structurally dynamic disordered cellular networks. J Cell Autom 2:273

    MathSciNet  MATH  Google Scholar 

  • Ros H, Hempel H, Schimansky-Geier L (1994) Stochastic dynamics of catalytic CO oxidation on Pt(100). Pysica A 206:421–440

    Article  Google Scholar 

  • Sanchez JR, Alonso-Sanz R (2004) Multifractal properties of R90 cellular automaton with memory. Int J Mod Phys C 15:1461

    Article  Google Scholar 

  • Stauffer D, Aharony A (1994) Introduction to percolation theory. CRC Press, London

    MATH  Google Scholar 

  • Svozil K (1986) Are quantum fields cellular automata? Phys Lett A 119(41):153–156

    Article  MathSciNet  Google Scholar 

  • Toffoli T, Margolus M (1987) Cellular automata machines. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Toffoli T, Margolus N (1990) Invertible cellular automata: a review. Physica D 45:229–253

    Article  MathSciNet  Google Scholar 

  • Vichniac G (1984) Simulating physics with cellular automata. Physica D 10:96–115

    Article  MathSciNet  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Article  Google Scholar 

  • Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models. Springer, Berlin

    Book  Google Scholar 

  • Wolfram S (1984) Universality and complexity in cellular automata. Physica D 10:1–35

    Article  MathSciNet  Google Scholar 

  • Wuensche A (2005) Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconv Comput 1:375–398

    Google Scholar 

  • Wuensche A, Lesser M (1992) The global dynamics of cellular automata. Addison-Wesley, Reading

    MATH  Google Scholar 

Books and Reviews

  • Alonso-Sanz R (2008) Cellular automata with memory. Old City Publising, Philadelphia

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Alonso-Sanz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alonso-Sanz, R. (2009). Cellular Automata with Memory. In: Adamatzky, A. (eds) Cellular Automata. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8700-9_55

Download citation

Publish with us

Policies and ethics