Skip to main content

Classification of Cellular Automata

  • Reference work entry
  • First Online:
Cellular Automata

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer-Verlag 2009

Glossary

Cellular automaton:

For our purposes, a (one-dimensional) cellular automaton (CA) is given by a local map ρ : Σw → Σ where Σ is the underlying alphabet of the automaton and w is its width. As a data structure, suitable as input to a decision algorithm, a CA can thus be specified by a simple lookup table. We abuse notation and write ρ(x) for the result of applying the global map of the CA to configuration x ∈ Σ.

Finite configurations:

One often considers CA with a special quiescent state: the homogeneous configuration where all cells are in the quiescent state is required to be fixed point under the global map. Infinite configurations where all but finitely many cells are in the quiescent state are often called finite configurations. This is somewhat of a misnomer; we prefer to speak about configurations with finite support.

Reversibility:

A discrete dynamical system is reversible if the evolution of the system incurs no loss of information: the state at time tcan be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adamatzky A (1994) Identification of cellular automata. Taylor & Francis, London

    MATH  Google Scholar 

  • Amoroso S, Patt YN (1972) Decision procedures for surjectivity and injectivity of parallel maps for tesselation structures. J Comput Syst Sci 6:448–464

    Article  MATH  Google Scholar 

  • Baldwin JT (2002) Computation versus simulation. http://www.math.uic.edu/%7Ejbaldwin/pub/cafom.ps. Accessed May 2007

  • Baldwin JT, Shelah S (2000) On the classifiability of cellular automata. Theor Comput Sci 230(1–2):117–129

    Article  MathSciNet  MATH  Google Scholar 

  • Baumslag G (2007) Magnus. http://caissny.org/. Accessed May 2007

  • Beal M-P, Perrin D (1997) Symbolic dynamics and finite automata. In: Rozenberg G, Salomaa A (eds) Handbook of formal languages. Springer, Berlin

    Google Scholar 

  • Bennett CH (1973) Logical reversibility of computation. IBM J Res Dev 17:525–532

    Article  MathSciNet  MATH  Google Scholar 

  • Börger E, Grädel E, Gurevich Y (2001) The classical decision problem. Springer, Berlin

    MATH  Google Scholar 

  • Cook M (2004) Universality in elementary cellular automata. Complex Syst 15(1):1–40

    MathSciNet  MATH  Google Scholar 

  • Culik K (1987) On invertible cellular automata. Complex Syst 1(6):1035–1044

    MathSciNet  MATH  Google Scholar 

  • Culik K, Sheng Y (1988) Undecidability of CA classification schemes. Complex Syst 2(2):177–190

    MathSciNet  MATH  Google Scholar 

  • Davis M (1956) A note on universal Turing machines. In: Shannon CE, McCarthy J (eds) Automata studies. Annals of mathematics studies, vol 34. Princeton University Press, Princeton, pp 167–175

    Google Scholar 

  • Davis M (1957) The definition of universal Turing machines. Proc Am Math Soc 8:1125–1126

    Article  MathSciNet  MATH  Google Scholar 

  • Delorme M, Mazoyer J (1999) Cellular automata: a parallel model. Mathematics and its applications, vol 460. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Delvenne J-C, Kůrka P, Blondel V (2006) Decidability and universality in symbolic dynamical systems. Fundamenta Informaticae 74(4):463–490

    MathSciNet  MATH  Google Scholar 

  • Durand-Lose J (2001) Representing reversible cellular automata with reversible block automata. Disc Math Theor Comp Sci Proc AA:145–154

    Google Scholar 

  • Elgaard J, Klarlund N, Møller A (1998) MONA 1.x: new techniques for WS1S and WS2S. In: Proceeding of the 10th international conference on computer-aided verification, CAV ’98. LNCS, vol 1427. Springer, Berlin, pp 516–520

    Chapter  Google Scholar 

  • Friedberg RM (1957) Two recursively enumerable sets of incomparable degrees of unsolvability. Proc Natl Acad Sci U S A 43:236–238

    Article  MATH  Google Scholar 

  • Grädel E, Thomas W, Wilke T (eds) (2002) Automata, logics, and infinite games, LNCS, vol 2500. Springer, Berlin

    MATH  Google Scholar 

  • Gutowitz H (1996a) Cellular automata and the sciences of complexity, part I. Complexity 1(5):16–22

    Article  MathSciNet  Google Scholar 

  • Gutowitz H (1996b) Cellular automata and the sciences of complexity, part II. Complexity 1(6)

    Article  MathSciNet  Google Scholar 

  • Harrington L, Shelah S (1982) The undecidability of the recursively enumerable degrees. Bull Am Math Soc 6:79–80

    Article  MathSciNet  MATH  Google Scholar 

  • Head T (1989) Linear CA: injectivity from ambiguity. Complex Syst 3(4):343–348

    MATH  Google Scholar 

  • Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375

    Article  MathSciNet  MATH  Google Scholar 

  • Hooper PK (1966) The undecidability of the Turing machine immortality problem. J Symb Log 31(2):219–234

    Article  MathSciNet  MATH  Google Scholar 

  • Kari J (1990) Reversibility of 2D cellular automata is undecidable. Physica D 45:397–385

    Article  MATH  Google Scholar 

  • Kůrka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergod Th Dyn Syst 17:417–433

    Article  MathSciNet  MATH  Google Scholar 

  • Kůrka P (2003) Topological and symbolic dynamics, Cours Spécialisés, vol 11. Societe Mathematique de France, Paris

    MATH  Google Scholar 

  • Langton CG (1990) Computation at the edge of chaos. Physica D 42:12–37

    Article  MathSciNet  Google Scholar 

  • Lecerf Y (1963) Machine de Turing réversible. Insolubilité récursive en n ∈ N de l’équation u = θnu, où θ est un “isomorphisme de codes”. C R Acad Sci Paris 257:2597–2600

    Google Scholar 

  • Lerman M (1983) Degrees of unsolvability. Perspectives in mathematical logic. Springer, Berlin

    Book  Google Scholar 

  • Li W, Packard N (1990) The structure of the elementary cellular automata rule space. Complex Syst 4(3):281–297

    MathSciNet  MATH  Google Scholar 

  • Li W, Packard N, Langton CG (1990) Transition phenomena in CA rule space. Physica D 45(1–3):77–94

    Article  MathSciNet  MATH  Google Scholar 

  • Libkin L (2004) Elements of finite model theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Manzini G, Margara L (1999) A complete and efficiently computable topological classification of D-dimensional linear cellular automata over Zm. Theor Comput Sci 221(1–2):157–177

    Article  MATH  Google Scholar 

  • Mazoyer J (1987) A six state minimal time solution to the firing squad synchronization problem. Theor Comput Sci 50:183–238

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell M, Crutchfield JP, Hraber PT (1994) Evolving cellular automata to perform computations: mechanisms and impediments. Physica D (75):361–369

    Article  MATH  Google Scholar 

  • Morita K (1994) Reversible cellular automata. J Inf Process Soc Japan 35:315–321

    Google Scholar 

  • Morita K (1995) Reversible simulation of one-dimensional irreversible cellular automata. Theor Comput Sci 148:157–163

    Article  MathSciNet  MATH  Google Scholar 

  • Morita K, Harao M (1989) Computation universality of 1 dimensional reversible (injective) cellular automata. Trans Inst Electron, Inf Commun Eng E 72:758–762

    Google Scholar 

  • Muchnik AA (1956) On the unsolvability of the problem of reducibility in the theory of algorithms. Dokl Acad Nauk SSSR 108:194–197

    MathSciNet  MATH  Google Scholar 

  • Neary R, Woods D (2006a) On the time complexity of 2-tag systems and small universal turing machines. In: FOCS. IEEE Comput Soc, Berkeley, pp 439–448

    Google Scholar 

  • Neary R, Woods D (2006b) Small fast universal turing machines. Theor Comput Sci 362(1–3):171–195

    Article  MathSciNet  MATH  Google Scholar 

  • Oliveira G, Oliveira P, Omar N (2001) Definition and application of a five-parameter characterization of one-dimensional cellular automata rule space. Artif Life 7(3):277–301

    Article  Google Scholar 

  • Ollinger N (2003) The intrinisic universality problem of one-dimensional cellular automata. In: Alt H, Habib M (eds) Proceeings STACS. LNCS, vol 2607. Springer, Berlin, pp 632–641

    Google Scholar 

  • Packard NH (1988) Adaptation towards the edge of chaos. In: Dynamic patterns in complex systems. World Scientific, Singapore, pp 29–301

    Google Scholar 

  • Rogers H (1967) Theory of recursive functions and effective computability. McGraw Hill, New York

    MATH  Google Scholar 

  • Rozenberg G, Salomaa A (1997) Handbook of formal languages. Springer, Berlin

    Book  MATH  Google Scholar 

  • Shepherdson JC (1965) Machine configuration and word problems of given degree of unsolvability. Z Math Logik Grundl Math 11:149–175

    Article  MathSciNet  MATH  Google Scholar 

  • Shoenfield JR (1967) Mathematical logic. Addison Wesley, Reading

    MATH  Google Scholar 

  • Soare RI (1972) The Friedberg-Muchnik theorem re-examined. Can J Math 24:1070–1078

    Article  MathSciNet  MATH  Google Scholar 

  • Soare RI (1987) Recursively enumerable sets and degrees. Perspectives in mathematical logic. Springer, Berlin

    Book  Google Scholar 

  • Sutner K (1989) A note on Culik-Yu classes. Complex Syst 3(1):107–115

    MathSciNet  MATH  Google Scholar 

  • Sutner K (1990) Classifying circular cellular automata. Physica D 45(1–3):386–395

    Article  MathSciNet  MATH  Google Scholar 

  • Sutner K (1991) De Bruijn graphs and linear cellular automata. Complex Syst 5(1):19–30

    MathSciNet  MATH  Google Scholar 

  • Sutner K (1995) The complexity of finite cellular automata. J Comput Syst Sci 50(1):87–97

    Article  MathSciNet  MATH  Google Scholar 

  • Sutner K (2002) Cellular automata and intermediate reachability problems. Fundamentae Informaticae 52(1–3):249–256

    MathSciNet  MATH  Google Scholar 

  • Sutner K (2003a) Almost periodic configurations on linear cellular automata. Fundamentae Informaticae 58(3,4):223–240

    MathSciNet  MATH  Google Scholar 

  • Sutner K (2003b) Cellular automata and intermediate degrees. Theor Comput Sci 296:365–375

    Article  MathSciNet  MATH  Google Scholar 

  • Sutner K (2004) The complexity of reversible cellular automata. Theor Comput Sci 325(2):317–328

    Article  MathSciNet  MATH  Google Scholar 

  • Taati S (2007) Cellular automata reversible over limit set. J Cell Autom 2(2):167–177

    MathSciNet  MATH  Google Scholar 

  • Toffoli T, Margolus N (1990) Invertible cellular automata: a review. Physica D 45:229–253

    Article  MathSciNet  MATH  Google Scholar 

  • Turing AM (1936) On computable numbers, with an application to the Entscheidungsproblem. P Lond Math Soc 42:230–265

    MathSciNet  MATH  Google Scholar 

  • Vorhees B (1996) Computational analysis of one-dimensional cellular automata. World Scientific, Singapore

    Google Scholar 

  • Wang H (1993) Popular lectures on mathematical logic. Dover Publications, Dover/New York

    MATH  Google Scholar 

  • Weihrauch K (2000) Computable analysis. EATCS monographs. Springer, Berlin

    Book  Google Scholar 

  • Wolfram S (1984a) Computation theory of cellular automata. Commun Math Phys 96(1):15–57

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfram S (1984b) Universality and complexity in cellular automata. Physica D 10:1–35

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfram S (1985) Twenty problems in the theory of cellular automata. Phys Scr T9:170–183

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfram S (2002a) The mathematica book. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wolfram S (2002b) A new kind of science. Wolfram Media, Champaign

    MATH  Google Scholar 

  • Wuensche A (1999) Classifying cellular automata automatically. Complexity 4(3):47–66

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Sutner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sutner, K. (2009). Classification of Cellular Automata. In: Adamatzky, A. (eds) Cellular Automata. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8700-9_50

Download citation

Publish with us

Policies and ethics