Skip to main content

Quantum Cellular Automata

  • Reference work entry
  • First Online:
Cellular Automata

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media New York 2013

Glossary

BQP complexity class:

Bounded error, quantum probabilistic, the class of decision problems solvable by a quantum computer in polynomial time with an error probability of at most one third.

Configuration:

The state of all cells at a given point in time.

Hadamard gate:

The one-qubit unitary gate \( U=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}1& 1\\ {}1& -1\end{array}\right) \)

Heisenberg picture:

Time evolution is represented by observables (elements of an operator algebra) evolving in time according to a unitary operator acting on them.

Neighborhood:

All cells with respect to a given cell that can affect this cell’s state at the next time step. A neighborhood always contains a finite number of cells.

Pauli operator:

The three Pauli operators are \( {\sigma}_x=\left(\begin{array}{cc}0& 1\\ {}1& 0\end{array}\right),{\sigma}_y=\left(\begin{array}{cc}0& -i\\ {}i& 0\end{array}\right),{\sigma}_z=\left(\begin{array}{cc}1& 0\\ {}0& -1\end{array}\right) \)

Phase gate:
...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  • Aoun B, Tarifi M (2004) Introduction to quantum cellular automata. http://arxiv.org/abs/quant-ph/0401123

  • Arrighi P (2006) Algebraic characterizations of unitary linear quantum cellular automata. In: Mathematical foundations of computer science 2006, vol 4162, Lecture notes in computer science. Springer, Berlin, pp 122–133

    Chapter  Google Scholar 

  • Arrighi P, Fargetton R (2007) Intrinsically universal one-dimensional quantum cellular automata. 0704.3961. http://arxiv.org/abs/0704.3961

  • Arrighi P, Nesme V, Werner R (2007) One-dimensional quantum cellular automata over finite, unbounded configurations. 0711.3517v1. http://arxiv.org/abs/0711.3517

  • Arrighi P, Nesme V, Werner R (2007) N-dimensional quantum cellular automata. 0711.3975v1. http://arxiv.org/abs/arXiv:0711.3975

  • Benioff P (1980) The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines. J Stat Phys 22:563–591

    Article  MathSciNet  Google Scholar 

  • Benjamin SC (2000) Schemes for parallel quantum computation without local control of qubits. Phys Rev A 61:020301–020304

    Article  Google Scholar 

  • Benjamin SC (2001) Quantum computing without local control of qubit-qubit interactions. Phys Rev Lett 88(1):017904

    Article  Google Scholar 

  • Benjamin SC, Bose S (2004) Quantum computing in arrays coupled by “always-on” interactions. Phys Rev A 70:032314

    Article  Google Scholar 

  • Bialynicki-Birula I (1994) Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys Rev D 49:6920

    Article  MathSciNet  Google Scholar 

  • Bloch I (2005) Ultracold quantum gases in optical lattices. Nat Phys 1:23–30

    Article  Google Scholar 

  • Boghosian BM, Taylor W (1998a) Quantum lattice-gas model for the many-particle Schrödinger equation in d dimensions. Phys Rev E 57:54

    Article  MathSciNet  Google Scholar 

  • Boghosian BM, Taylor W (1998b) Simulating quantum mechanics on a quantum computer. Phys D Nonlinear Phenom 120:30–42

    Article  MathSciNet  Google Scholar 

  • Brennen GK, Williams JE (2003) Entanglement dynamics in one-dimensional quantum cellular automata. Phys Rev A 68:042311

    Article  MathSciNet  Google Scholar 

  • Cook M (2004) Universality in elementary cellular automata. Complex Syst 15:1

    MathSciNet  MATH  Google Scholar 

  • Dürr C, Santha M (2002) A decision procedure for unitary linear quantum cellular automata. SIAM J Comput 31:1076–1089

    Article  MathSciNet  Google Scholar 

  • Dürr C, LêThanh H, Santha M (1997) A decision procedure for well-formed linear quantum cellular automata. Random Struct Algorithm 11:381–394

    Article  MathSciNet  Google Scholar 

  • Feynman R (1982) Simulating physics with computers. Int J Theor Phys 21:467–488

    Article  MathSciNet  Google Scholar 

  • Fussy S, Grössing G, Schwabl H, Scrinzi A (1993) Nonlocal computation in quantum cellular automata. Phys Rev A 48:3470

    Article  Google Scholar 

  • Grössing G, Zeilinger A (1988) Quantum cellular automata. Complex Syst 2:197–208

    MathSciNet  MATH  Google Scholar 

  • Gruska J (1999) Quantum computing. Osborne/McGraw-Hill, New York, QCA are treated in Section 4.3

    MATH  Google Scholar 

  • Kempe J (2003) Quantum random walks: an introductory overview. Contemp Phys 44:307

    Article  Google Scholar 

  • Lloyd S (1993) A potentially realizable quantum computer. Science 261:1569–1571

    Article  Google Scholar 

  • Love P, Boghosian B (2005) From Dirac to diffusion: decoherence in quantum lattice gases. Quantum Inf Process 4:335–354

    Article  Google Scholar 

  • Margolus N (1991) Parallel quantum computation. In: Zurek WH (ed) Complexity, entropy, and the physics of information, Santa Fe Institute series. Addison Wesley, Redwood City, pp 273–288

    Google Scholar 

  • Meyer DA (1996a) From quantum cellular automata to quantum lattice gases. J Stat Phys 85:551–574

    Article  MathSciNet  Google Scholar 

  • Meyer DA (1996b) On the absence of homogeneous scalar unitary cellular automata. Phys Lett A 223:337–340

    Article  MathSciNet  Google Scholar 

  • Meyer DA (1997) Quantum mechanics of lattice gas automata: one-particle plane waves and potentials. Phys Rev E 55:5261

    Article  Google Scholar 

  • Meyer DA (2002) Quantum computing classical physics. Philos Trans R Soc A 360:395–405

    Article  MathSciNet  Google Scholar 

  • Nagaj D, Wocjan P (2008) Hamiltonian quantum cellular automata in 1d. 0802.0886. http://arxiv.org/abs/0802.0886

  • Ortiz G, Gubernatis JE, Knill E, Laflamme R (2001) Quantum algorithms for fermionic simulations. Phys Rev A 64:022319

    Article  Google Scholar 

  • Perez-Delgado CA, Cheung D (2005) Models of quantum cellular automata. http://arxiv.org/abs/quant-ph/0508164

  • Perez-Delgado CA, Cheung D (2007) Local unitary quantum cellular automata. Phys Rev A (At Mol Opt Phys) 76:032320–15

    Article  MathSciNet  Google Scholar 

  • Raussendorf R (2005) Quantum cellular automaton for universal quantum computation. Phys Rev A (At Mol Opt Phys) 72:022301–022304

    Article  MathSciNet  Google Scholar 

  • Richter W (1996) Ergodicity of quantum cellular automata. J Stat Phys 82:963–998

    Article  MathSciNet  Google Scholar 

  • Schumacher B, Werner RF (2004) Reversible quantum cellular automata. quant-ph/0405174. http://arxiv.org/abs/quant-ph/0405174

  • Shepherd DJ, Franz T, Werner RF (2006) Universally programmable quantum cellular automaton. Phys Rev Lett 97:020502–020504

    Article  Google Scholar 

  • Succi S, Benzi R (1993) Lattice Boltzmann equation for quantum mechanics. Phys D Nonlinear Phenom 69:327–332

    Article  MathSciNet  Google Scholar 

  • Toffoli T, Margolus NH (1990) Invertible cellular automata: a review. Phys D Nonlinear Phenom 45:229–253

    Article  MathSciNet  Google Scholar 

  • Tóth G, Lent CS (2001) Quantum computing with quantum-dot cellular automata. Phys Rev A 63:052315

    Article  Google Scholar 

  • Twamley J (2003) Quantum-cellular-automata quantum computing with endohedral fullerenes. Phys Rev A 67:052318

    Article  Google Scholar 

  • van Dam W (1996) Quantum cellular automata. Master’s thesis, University of Nijmegen

    Google Scholar 

  • Vidal G (2004) Efficient simulation of one-dimensional quantum many-body systems. Phys Rev Lett 93(4):040502

    Article  MathSciNet  Google Scholar 

  • Vollbrecht KGH, Cirac JI (2008) Quantum simulators, continuous-time automata, and translationally invariant systems. Phys Rev Lett 100:010501

    Article  Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Champaign

    Google Scholar 

  • Watrous J (1995) On one-dimensional quantum cellular automata. In: Proceedings of the 36th annual symposium on foundations of computer science, Milwaukee, pp 528–537

    Google Scholar 

  • Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55:601

    Article  MathSciNet  Google Scholar 

  • Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature 299:802–803

    Article  Google Scholar 

Books and Reviews

  • Summaries of the topic of QCA can be found in chapter 4.3 of Gruska (Grössing and Zeilinger 1988), and in Aoun and Tarifi (2004) and Ortiz et al. (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karoline Wiesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wiesner, K. (2018). Quantum Cellular Automata. In: Adamatzky, A. (eds) Cellular Automata. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8700-9_426

Download citation

Publish with us

Policies and ethics