Skip to main content

Evolving Cellular Automata

  • Reference work entry
  • First Online:
Cellular Automata

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • 1220 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer-Verlag 2009

Glossary

Cellular automaton (CA):

Discrete-space and discrete-time spatially extended lattice of cells connected in a regular pattern. Each cell stores its state and a state-transition function. At each time step, each cell applies the transition function to update its state based on its local neighborhood of cell states. The update of the system is performed in synchronous steps – i.e., all cells update simultaneously.

Cellular programming:

A variation of genetic algorithms designed to simultaneously evolve state transition rules and local neighborhood connection topologies for non-homogeneous cellular automata.

Coevolution:

An extension to the genetic algorithm in which candidate solutions and their “environment” (typically test cases) are evolved simultaneously.

Density classification:

A computational task for binary CAs: the desired behavior for the CA is to iterate to an all-1s configuration if the initial configuration has a majority of cells in state 1, and to an all-0s...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alba E, Giacobini M, Tomassini M, Romero S (2002) Comparing synchronous and asynchronous cellular genetic algorithms. In: MJJ G et al (eds) Parallel problem solving from nature. PPSN VII, Seventh international conference. Springer, Berlin, pp 601–610

    Chapter  Google Scholar 

  • Andre D, Bennett FH III, Koza JR (1996) Evolution of intricate long-distance communication signals in cellular automata using genetic programming. In: Artificial life V: Proceedings of the fifth international workshop on the synthesis and simulation of living systems. MIT Press, Cambridge

    Google Scholar 

  • Ashlock D (2006) Evolutionary computation for modeling and optimization. Springer, New York

    MATH  Google Scholar 

  • Back T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, New York

    MATH  Google Scholar 

  • Basanta D, Bentley PJ, Miodownik MA, Holm EA (2004) Evolving cellular automata to grow microstructures. In: Genetic programming: 6th European conference. EuroGP 2003, Essex, UK, April 14–16, 2003. Proceedings. Springer, Berlin, pp 77–130

    Google Scholar 

  • Bersini H, Detours V (2002) Asynchrony induces stability in cellular automata based models. In: Proceedings of the IVth conference on artificial life. MIT Press, Cambridge, pp 382–387

    Google Scholar 

  • Bucci A, Pollack JB (2002) Order-theoretic analysis of coevolution problems: coevolutionary statics. In: GECCO 2002 workshop on understanding coevolution: theory and analysis of coevolutionary algorithms, vol 1. Morgan Kaufmann, San Francisco, pp 229–235

    Google Scholar 

  • Burks A (1970) Essays on cellular automata. University of Illinois Press, Urban

    MATH  Google Scholar 

  • Cartlidge J, Bullock S (2004) Combating coevolutionary disengagement by reducing parasite virulence. Evol Comput 12(2):193–222

    Article  Google Scholar 

  • Chopra P, Bender A (2006) Evolved cellular automata for protein secondary structure prediction imitate the determinants for folding observed in nature. Silico Biol 7(0007):87–93

    Google Scholar 

  • Codd EF (1968) Cellular automata. ACM monograph series, New York

    Google Scholar 

  • Corno F, Reorda MS, Squillero G (2000) Exploiting the selfish gene algorithm for evolving cellular automata. In: IEEE-INNSENNS International Joint Conference on Neural Networks (IJCNN’00), vol 06, p 6577

    Google Scholar 

  • Crutchfield JP, Mitchell M, Das R (2003) The evolutionary design of collective computation in cellular automata. In: Crutchfield JP, Schuster PK (eds) Evolutionary dynamics – exploring the interplay of selection, neutrality, accident, and function. Oxford University Press, New York, pp 361–411

    Google Scholar 

  • Das R, Mitchell M, Crutchfield JP (1994) A genetic algorithm discovers particle-based computation in cellular automata. In: Davidor Y, Schwefel HP, Männer R (eds) Parallel problem solving from nature-III. Springer, Berlin, pp 344–353

    Chapter  Google Scholar 

  • Das R, Crutchfield JP, Mitchell M, Hanson JE (1995) Evolving globally synchronized cellular automata. In: Eshelman L (ed) Proceedings of the sixth international conference on genetic algorithms. Morgan Kaufmann, San Francisco, pp 336–343

    Google Scholar 

  • Farmer JD, Toffoli T, Wolfram S (1984) Cellular automata: proceedings of an interdisciplinary workshop. Elsevier Science, Los Alamos

    MATH  Google Scholar 

  • Funes P, Sklar E, Juille H, Pollack J (1998) Animal-animat coevolution: using the animal population as fitness function. In: Pfeiffer R, Blumberg B, Wilson JA, Meyer S (eds) From animals to animats 5: Proceedings of the fifth international conference on simulation of adaptive behavior. MIT Press, Cambridge, pp 525–533

    Google Scholar 

  • Gardner M (1970) Mathematical games: the fantastic combinations of John Conway’s new solitaire game “Life”. Sci Am 223:120–123

    Article  Google Scholar 

  • Grassberger P (1983) Chaos and diffusion in deterministic cellular automata. Physica D 10(1–2):52–58

    MathSciNet  Google Scholar 

  • Hanson JE (1993) Computational mechanics of cellular automata. PhD thesis, University of California at Berkeley

    Google Scholar 

  • Hanson JE, Crutchfield JP (1992) The attractor-basin portrait of a cellular automaton. J Stat Phys 66:1415–1462

    Article  MathSciNet  Google Scholar 

  • Hartman H, Vichniac GY (1986) Inhomogeneous cellular automata (inca). In: Bienenstock E, Fogelman F, Weisbuch G (eds) Disordered systems and biological organization, vol F20. Springer, Berlin, pp 53–57

    Chapter  Google Scholar 

  • Hillis WD (1990) Co-evolving parasites improve simulated evolution as an optimization procedure. Physica D 42:228–234

    Article  Google Scholar 

  • Hordijk W, Crutchfield JP, Mitchell M (1996) Embedded-particle computation in evolved cellular automata. In: Toffoli T, Biafore M, Leão J (eds) Physics and computation 1996. New England Complex Systems Institute, Cambridge, pp 153–158

    Google Scholar 

  • Huberman BA, Glance NS (1993) Evolutionary games and computer simulations. Proc Natl Acad Sci 90:7716–7718

    Article  Google Scholar 

  • Ikebe M, Amemiya Y (2001) Chapter 6: VMoS cellular-automaton circuit for picture processing. In: Miki T (ed) Brainware: bio-inspired architectures and its hardware implementation, vol 6 of FLSI Soft Computing. World Scientific, Singapore, pp 135–162

    Chapter  Google Scholar 

  • Jiménez-Morales F, Crutchfield JP, Mitchell M (2001) Evolving two-dimensional cellular automata to perform density classification: a report on work in progress. Parallel Comput 27(5):571–585

    Article  Google Scholar 

  • Juillé H, Pollack JB (1998) Coevolutionary learning: a case study. In: Proceedings of the fifteenth international conference on machine learning (ICML-98). Morgan Kaufmann, San Francisco, pp 24–26

    Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge

    MATH  Google Scholar 

  • Koza JR (1994) Genetic programming II: automatic discovery of reusable programs. MIT Press, Cambridge

    MATH  Google Scholar 

  • Land M, Belew RK (1995) No perfect two-state cellular automata for density classification exists. Phys Rev Lett 74(25):5148–5150

    Article  Google Scholar 

  • Langton C (1986) Studying artificial life with cellular automata. Physica D 10D:120

    Article  MathSciNet  Google Scholar 

  • Langton C (1990) Computation at the edge of chaos: phase transitions and emergent computation. Physica D 42:12–37

    Article  MathSciNet  Google Scholar 

  • Lohn JD, Reggia JA (1997) Automatic discovery of self-replicating structures in cellular automata. IEEE Trans Evol Comput 1(3):165–178

    Article  Google Scholar 

  • Madore BF, Freedman WL (1983) Computer simulations of the Belousov-Zhabotinsky reaction. Science 222:615–616

    Article  Google Scholar 

  • Mitchell M (1996) An introduction to genetic algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  • Mitchell M (1998) Computation in cellular automata: a selected review. In: Gramss T, Bornholdt S, Gross M, Mitchell M, Pellizzari T (eds) Nonstandard computation. VCH, Weinheim, pp 95–140

    Google Scholar 

  • Mitchell M, Hraber PT, Crutchfield JP (1993) Revisiting the edge of chaos: evolving cellular automata to perform computations. Complex Syst 7:89–130

    MATH  Google Scholar 

  • Mitchell M, Thomure MD, Williams NL (2006) The role of space in the success of coevolutionary learning. In: Rocha LM, Yaeger LS, Bedau MA, Floreano D, Goldstone RL, Vespignani A (eds) Artificial life X: Proceedings of the tenth international conference on the simulation and synthesis of living systems. MIT Press, Cambridge, pp 118–124

    Google Scholar 

  • Packard NH (1988) Adaptation toward the edge of chaos. In: Kelso JAS, Mandell AJ, Shlesinger M (eds) Dynamic patterns in complex systems. World Scientific, Singapore, pp 293–301

    Google Scholar 

  • Pagie L, Hogeweg P (1997) Evolutionary consequences of coevolving targets. Evol Comput 5(4):401–418

    Article  Google Scholar 

  • Pagie L, Mitchell M (2002) A comparison of evolutionary and coevolutionary search. Int J Comput Intell Appl 2(1):53–69

    Article  Google Scholar 

  • Reynaga R, Amthauer E (2003) Two-dimensional cellular automata of radius one for density classification task \( \rho =\frac{1}{2} \). Pattern Recogn Lett 24(15):2849–2856

    Article  Google Scholar 

  • Rosin C, Belew R (1997) New methods for competitive coevolution. Evol Comput 5(1):1–29

    Article  Google Scholar 

  • Schadschneider A (2001) Cellular automaton approach to pedestrian dynamics – theory. In: Pedestrian and evacuation dynamics. Springer, Berlin, pp 75–86

    Google Scholar 

  • Sipper M (1994) Non-uniform cellular automata: evolution in rule space and formation of complex structures. In: Brooks RA, Maes P (eds) Artificial life IV. MIT Press, Cambridge, pp 394–399

    Google Scholar 

  • Sipper M (1997) Evolution of parallel cellular machines: the cellular programming approach. Springer, Heidelberg

    Book  Google Scholar 

  • Sipper M, Ruppin E (1997) Co-evolving architectures for cellular machines. Physica D 99:428–441

    Article  Google Scholar 

  • Sipper M, Tomassini M, Capcarrere M (1997) Evolving asynchronous and scalable non-uniform cellular automata. In: Proceedings of the international conference on artificial neural networks and genetic algorithms (ICANNGA97). Springer, Vienna, pp 382–387

    Google Scholar 

  • Subrata R, Zomaya AY (2003) Evolving cellular automata for location management in mobile computing networks. IEEE Trans Parallel Distrib Syst 14(1):13–26

    Article  Google Scholar 

  • Tan SK, Guan SU (2007) Evolving cellular automata to generate nonlinear sequences with desirable properties. Appl Soft Comput 7(3):1131–1134

    Article  Google Scholar 

  • Teuscher C (2006) On irregular interconnect fabrics for self-assembled nanoscale electronics. In: Tyrrell AM, Haddow PC, Torresen J (eds) 2nd IEEE international workshop on defect and fault tolerant nanoscale architectures, NANOARCH’06. Lecture notes in computer science, vol 2602. ACM Press, New York, pp 60–67

    Google Scholar 

  • Teuscher C, Capcarrere MS (2003) On fireflies, cellular systems, and evolware. In: Tyrrell AM, Haddow PC, Torresen J (eds) Evolvable systems: from biology to hardware. Proceedings of the 5th international conference, ICES2003. Lecture notes in computer science, vol 2602. Springer, Berlin, pp 1–12

    Google Scholar 

  • Vichniac GY, Tamayo P, Hartman H (1986) Annealed and quenched inhomogeneous cellular automata. J Stat Phys 45:875–883

    Article  MathSciNet  Google Scholar 

  • von Neumann J (1966) Theory of self-reproducing automata. University of Illinois Press, Champaign

    Google Scholar 

  • Wiegand PR, Sarma J (2004) Spatial embedding and loss of gradient in cooperative coevolutionary algorithms. Parallel Probl Solving Nat 1:912–921

    Google Scholar 

  • Williams N, Mitchell M (2005) Investigating the success of spatial coevolution. In: Proceedings of the 2005 conference on genetic and evolutionary computation, Washington, DC, pp 523–530

    Google Scholar 

  • Wolfram S (1984) Universality and complexity in cellular automata. Physica D 10D:1

    Article  MathSciNet  Google Scholar 

  • Wolfram S (1986) Theory and application of cellular automata. World Scientific Publishing, Singapore

    Google Scholar 

  • Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

    MATH  Google Scholar 

  • Yu T, Lee S (2002) Evolving cellular automata to model fluid flow in porous media. In: 2002 Nasa/DoD conference on evolvable hardware (EH ’02). IEEE Computer Society, Los Alamitos, p 210

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Center on Functional Engineered Nano Architectonics (FENA), through the Focus Center Research Program of the Semiconductor Industry Association.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cenek, M., Mitchell, M. (2009). Evolving Cellular Automata. In: Adamatzky, A. (eds) Cellular Automata. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8700-9_191

Download citation

Publish with us

Policies and ethics