Skip to main content

Ergodic Theory of Cellular Automata

  • Reference work entry
  • First Online:
Cellular Automata

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • 1250 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer-Verlag 2009

Glossary

Configuration space and the shift :

Let \( \mathbb{M} \) be a finitely generated group or monoid (usually abelian). Typically, \( \mathbb{M}=\mathrm{\mathbb{N}}:= \left\{0,1,2,\dots \right\} \) or \( \mathbb{M}=\mathrm{\mathbb{Z}}:= \left\{\dots, -1,0,1,2,\dots \right\}, \)or \( \mathbb{M}={\mathrm{\mathbb{N}}}^E \), ℤD, or ℤD × ℕE for some D, E ∈ ℕ. In some applications, \( \mathbb{M} \) could be nonabelian (although usually amenable), but to avoid notational complexity we will generally assume \( \mathbb{M} \) is abelian and additive, with operation ‘+’.

Let A be a finite set of symbols (called an alphabet). Let A M denote the set of all functions a : M A , which we regard as \( \mathbb{M} \)-indexed configurations of elements in A . We write such a configuration as \( \mathbf{a}={\left[{a}_{\mathrm{m}}\right]}_{\mathrm{m}\in \mathbb{M}} \), where a m A for all \( \mathrm{m}\in \mathbb{M} \), and refer to A M as configuration space.

Treat A as a discrete topological space;...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Akin E (1993) The general topology of dynamical systems. Graduate studies in mathematics, vol 1. American Mathematical Society, Providence

    Google Scholar 

  • Allouche JP (1999) Cellular automata, finite automata, and number theory. In: Cellular automata (Saissac, 1996), Math. Appl., vol 460. Kluwer, Dordrecht, pp 321–330

    Chapter  Google Scholar 

  • Allouche JP, Skordev G (2003) Remarks on permutive cellular automata. J Comput Syst Sci 67(1):174–182

    Article  MathSciNet  MATH  Google Scholar 

  • Allouche JP, von Haeseler F, Peitgen HO, Skordev G (1996) Linear cellular automata, finite automata and Pascal’s triangle. Discret Appl Math 66(1):1–22

    Article  MathSciNet  MATH  Google Scholar 

  • Allouche JP, von Haeseler F, Peitgen HO, Petersen A, Skordev G (1997) Automaticity of double sequences generated by one-dimensional linear cellular automata. Theor Comput Sci 188(1–2):195–209

    Article  MathSciNet  MATH  Google Scholar 

  • Barbé A, von Haeseler F, Peitgen HO, Skordev G (1995) Coarse-graining invariant patterns of one-dimensional two-state linear cellular automata. Int J Bifurcat Chaos Appl Sci Eng 5(6):1611–1631

    Article  MathSciNet  MATH  Google Scholar 

  • Barbé A, von Haeseler F, Peitgen HO, Skordev G (2003) Rescaled evolution sets of linear cellular automata on a cylinder. Int J Bifurcat Chaos Appl Sci Eng 13(4):815–842

    Article  MathSciNet  MATH  Google Scholar 

  • Belitsky V, Ferrari PA (2005) Invariant measures and convergence properties for cellular automaton 184 and related processes. J Stat Phys 118(3–4):589–623

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard F, Maass A (1997) Dynamical properties of expansive one-sided cellular automata. Israel J Math 99:149–174

    Article  MathSciNet  MATH  Google Scholar 

  • Blank M (2003) Ergodic properties of a simple deterministic traffic flow model. J Stat Phys 111(3–4):903–930

    Article  MathSciNet  MATH  Google Scholar 

  • Boccara N, Naser J, Roger M (1991) Particle-like structures and their interactions in spatiotemporal patterns generated by one-dimensional deterministic cellular automata. Phys Rev A 44(2):866–875

    Article  Google Scholar 

  • Boyle M, Lind D (1997) Expansive subdynamics. Trans Am Math Soc 349(1):55–102

    Article  MathSciNet  MATH  Google Scholar 

  • Boyle M, Fiebig D, Fiebig UR (1997) A dimension group for local homeomorphisms and endomorphisms of onesided shifts of finite type. J Reine Angew Math 487:27–59

    MathSciNet  MATH  Google Scholar 

  • Burton R, Steif JE (1994) Non-uniqueness of measures of maximal entropy for subshifts of finite type. Ergodic Theory Dyn Syst 14(2):213–235

    Article  MathSciNet  MATH  Google Scholar 

  • Burton R, Steif JE (1995) New results on measures of maximal entropy. Israel J Math 89(1–3):275–300

    Article  MathSciNet  MATH  Google Scholar 

  • Cai H, Luo X (1993) Laws of large numbers for a cellular automaton. Ann Probab 21(3):1413–1426

    Article  MathSciNet  MATH  Google Scholar 

  • Cattaneo G, Formenti E, Manzini G, Margara L (1997) On ergodic linear cellular automata over Zm. In: STACS 97 (Lübeck). Lecture notes in computer science, vol 1200. Springer, Berlin, pp 427–438

    Google Scholar 

  • Cattaneo G, Formenti E, Manzini G, Margara L (2000) Ergodicity, transitivity, and regularity for linear cellular automata over Zm. Theor Comput Sci 233(1–2):147–164

    Article  MATH  Google Scholar 

  • Ceccherini-Silberstein TG, Machì A, Scarabotti F (1999) Amenable groups and cellular automata. Ann Inst Fourier (Grenoble) 49(2):673–685

    Article  MathSciNet  MATH  Google Scholar 

  • Ceccherini-Silberstein T, Fiorenzi F, Scarabotti F (2004) The Garden of Eden theorem for cellular automata and for symbolic dynamical systems. In: Random walks and geometry. de Gruyter, Berlin, pp 73–108

    MATH  Google Scholar 

  • Courbage M, Kamiński B (2002) On the directional entropy of ℤ2-actions generated by cellular automata. Stud Math 153(3):285–295

    Article  MathSciNet  MATH  Google Scholar 

  • Courbage M, Kamiński B (2006) Space-time directional Lyapunov exponents for cellular automata. J Stat Phys 124(6):1499–1509

    Article  MathSciNet  MATH  Google Scholar 

  • Coven EM (1980) Topological entropy of block maps. Proc Am Math Soc 78(4):590–594

    Article  MathSciNet  MATH  Google Scholar 

  • Coven EM, Paul ME (1974) Endomorphisms of irreducible subshifts of finite type. Math Syst Theory 8(2):167–175

    Article  MathSciNet  MATH  Google Scholar 

  • Downarowicz T (1997) The royal couple conceals their mutual relationship: a noncoalescent Toeplitz flow. Israel J Math 97:239–251

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett R, Steif JE (1991) Some rigorous results for the Greenberg–Hastings model. J Theor Probab 4(4):669–690

    Article  MathSciNet  MATH  Google Scholar 

  • Durrett R, Steif JE (1993) Fixation results for threshold voter systems. Ann Probab 21(1):232–247

    Article  MathSciNet  MATH  Google Scholar 

  • Einsiedler M (2004) Invariant subsets and invariant measures for irreducible actions on zero-dimensional groups. Bull Lond Math Soc 36(3):321–331

    Article  MathSciNet  MATH  Google Scholar 

  • Einsiedler M (2005) Isomorphism and measure rigidity for algebraic actions on zero-dimensional groups. Monatsh Math 144(1):39–69

    Article  MathSciNet  MATH  Google Scholar 

  • Einsiedler M, Lind D (2004) Algebraic ℤd-actions on entropy rank one. Trans Am Math Soc 356(5):1799–1831 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Einsiedler M, Rindler H (2001) Algebraic actions of the discrete Heisenberg group and other non-abelian groups. Aequationes Math 62(1–2):117–135

    Article  MathSciNet  MATH  Google Scholar 

  • Einsiedler M, Ward T (2005) Entropy geometry and disjointness for zero-dimensional algebraic actions. J Reine Angew Math 584:195–214

    Article  MathSciNet  MATH  Google Scholar 

  • Einsiedler M, Lind D, Miles R, Ward T (2001) Expansive subdynamics for algebraic ℤd-actions. Ergodic Theory Dyn Syst 21(6):1695–1729

    Article  MathSciNet  MATH  Google Scholar 

  • Eloranta K, Nummelin E (1992) The kink of cellular automaton rule 18 performs a random walk. J Stat Phys 69(5–6):1131–1136

    Article  MathSciNet  MATH  Google Scholar 

  • Fagnani F, Margara L (1998) Expansivity, permutivity, and chaos for cellular automata. Theory Comput Syst 31(6):663–677

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrari PA, Maass A, Martínez S, Ney P (2000) Cesàro mean distribution of group automata starting from measures with summable decay. Ergodic Theory Dyn Syst 20(6):1657–1670

    Article  MATH  Google Scholar 

  • Finelli M, Manzini G, Margara L (1998) Lyapunov exponents versus expansivity and sensitivity in cellular automata. J Complex 14(2):210–233

    Article  MathSciNet  MATH  Google Scholar 

  • Fiorenzi F (2000) The Garden of Eden theorem for sofic shifts. Pure Math Appl 11(3):471–484

    MathSciNet  MATH  Google Scholar 

  • Fiorenzi F (2003) Cellular automata and strongly irreducible shifts of finite type. Theor Comput Sci 299(1–3):477–493

    Article  MathSciNet  MATH  Google Scholar 

  • Fiorenzi F (2004) Semi-strongly irreducible shifts. Adv Appl Math 32(3):421–438

    Article  MathSciNet  MATH  Google Scholar 

  • Fisch R (1990) The one-dimensional cyclic cellular automaton: a system with deterministic dynamics that emulates an interacting particle system with stochastic dynamics. J Theor Probab 3(2):311–338

    Article  MathSciNet  MATH  Google Scholar 

  • Fisch R (1992) Clustering in the one-dimensional three-color cyclic cellular automaton. Ann Probab 20(3):1528–1548

    Article  MathSciNet  MATH  Google Scholar 

  • Fisch R, Gravner J (1995) One-dimensional deterministic Greenberg–Hastings models. Complex Syst 9(5):329–348

    MathSciNet  MATH  Google Scholar 

  • Furstenberg H (1967) Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math Syst Theory 1:1–49

    Article  MathSciNet  MATH  Google Scholar 

  • Gilman RH (1987) Classes of linear automata. Ergodic Theory Dyn Syst 7(1):105–118

    Article  MathSciNet  MATH  Google Scholar 

  • Gottschalk W (1973) Some general dynamical notions. In: Recent advances in topological dynamics (Proceedings of the conference on topological dynamics, Yale University, New Haven, 1972; in honor of Gustav Arnold Hedlund). Lecture notes in mathematics, vol 318. Springer, Berlin, pp 120–125

    Google Scholar 

  • Grassberger P (1984a) Chaos and diffusion in deterministic cellular automata. Phys D 10(1–2):52–58, cellular automata (Los Alamos, 1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Grassberger P (1984b) New mechanism for deterministic diffusion. Phys Rev A 28(6):3666–3667

    Article  Google Scholar 

  • Grigorchuk RI (1984) Degrees of growth of finitely generated groups and the theory of invariant means. Izv Akad Nauk SSSR Ser Mat 48(5):939–985

    MathSciNet  Google Scholar 

  • Gromov M (1981) Groups of polynomial growth and expanding maps. Inst Hautes Études Sci Publ Math 53:53–73

    Article  MathSciNet  MATH  Google Scholar 

  • Gromov M (1999) Endomorphisms of symbolic algebraic varieties. J Eur Math Soc 1(2):109–197

    Article  MathSciNet  MATH  Google Scholar 

  • Hedlund GA (1969) Endormorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375

    Article  MATH  Google Scholar 

  • Hilmy H (1936) Sur les centres d’attraction minimaux des systems dynamiques. Compos Math 3:227–238

    MathSciNet  MATH  Google Scholar 

  • Host B (1995) Nombres normaux, entropie, translations. Israel J Math 91(1–3):419–428

    Article  MathSciNet  MATH  Google Scholar 

  • Host B, Maass A, Martìnez S (2003) Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discret Contin Dyn Syst 9(6):1423–1446

    Article  MathSciNet  MATH  Google Scholar 

  • Hurd LP, Kari J, Culik K (1992) The topological entropy of cellular automata is uncomputable. Ergodic Theory Dyn Syst 12(2):255–265

    Article  MathSciNet  MATH  Google Scholar 

  • Hurley M (1990a) Attractors in cellular automata. Ergodic Theory Dyn Syst 10(1):131–140

    Article  MathSciNet  MATH  Google Scholar 

  • Hurley M (1990b) Ergodic aspects of cellular automata. Ergodic Theory Dyn Syst 10(4):671–685

    Article  MathSciNet  MATH  Google Scholar 

  • Hurley M (1991) Varieties of periodic attractor in cellular automata. Trans Am Math Soc 326(2):701–726

    Article  MathSciNet  MATH  Google Scholar 

  • Hurley M (1992) Attractors in restricted cellular automata. Proc Am Math Soc 115(2):563–571

    Article  MathSciNet  MATH  Google Scholar 

  • Jen E (1988) Linear cellular automata and recurring sequences in finite fields. Commun Math Phys 119(1):13–28

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson ASA (1992) Measures on the circle invariant under multiplication by a nonlacunary subsemigroup of the integers. Israel J Math 77(1–2):211–240

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson A, Rudolph DJ (1995) Convergence under ×q of ×p invariant measures on the circle. Adv Math 115(1):117–140

    Article  MathSciNet  MATH  Google Scholar 

  • Kitchens BP (1987) Expansive dynamics on zero-dimensional groups. Ergodic Theory Dyn Syst 7(2):249–261

    Article  MathSciNet  MATH  Google Scholar 

  • Kitchens B (2000) Dynamics of Zd actions on Markov subgroups. In: Topics in symbolic dynamics and applications (Temuco, 1997). London Mathematical Society lecture note series, vol 279. Cambridge University Press, Cambridge, pp 89–122

    Google Scholar 

  • Kitchens B, Schmidt K (1989) Automorphisms of compact groups. Ergodic Theory Dyn Syst 9(4):691–735

    Article  MathSciNet  MATH  Google Scholar 

  • Kitchens B, Schmidt K (1992) Markov subgroups of \( {\left(\mathbf{Z}/2\mathbf{Z}\right)}^{{\mathbf{Z}}^2} \). In: Symbolic dynamics and its applications (New Haven, 1991). Contemporary mathematics, vol 135. American Mathematical Society, Providence, pp 265–283

    Chapter  Google Scholar 

  • Kleveland R (1997) Mixing properties of one-dimensional cellular automata. Proc Am Math Soc 125(6):1755–1766

    Article  MathSciNet  MATH  Google Scholar 

  • Kůrka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergodic Theory Dyn Syst 17(2):417–433

    Article  MathSciNet  MATH  Google Scholar 

  • Kůrka P (2001) Topological dynamics of cellular automata. In: Codes, systems, and graphical models (Minneapolis, 1999), IMA vol Math Appl, vol 123. Springer, New York, pp 447–485

    Chapter  Google Scholar 

  • Kůrka P (2003) Cellular automata with vanishing particles. Fundam Inform 58(3–4):203–221

    MathSciNet  Google Scholar 

  • Kůrka P (2005) On the measure attractor of a cellular automaton. Discret Contin Dyn Syst 2005(Suppl):524–535

    MathSciNet  Google Scholar 

  • Kůrka P, Maass A (2000) Limit sets of cellular automata associated to probability measures. J Stat Phys 100(5–6):1031–1047

    Article  MathSciNet  MATH  Google Scholar 

  • Kůrka P, Maass A (2002) Stability of subshifts in cellular automata. Fundam Inform 52(1–3):143–155, special issue on cellular automata

    MathSciNet  MATH  Google Scholar 

  • Lind DA (1984) Applications of ergodic theory and sofic systems to cellular automata. Phys D 10(1–2):36–44, cellular automata (Los Alamos, 1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Lind DA (1987) Entropies of automorphisms of a topological Markov shift. Proc Am Math Soc 99(3):589–595

    Article  MathSciNet  MATH  Google Scholar 

  • Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Lucas E (1878) Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier. Bull Soc Math Fr 6:49–54

    Article  MATH  Google Scholar 

  • Lyons R (1988) On measures simultaneously 2- and 3-invariant. Israel J Math 61(2):219–224

    Article  MathSciNet  MATH  Google Scholar 

  • Maass A (1996) Some dynamical properties of one-dimensional cellular automata. In: Dynamics of complex interacting systems (Santiago, 1994). Nonlinear phenomena and complex systems, vol 2. Kluwer, Dordrecht, pp 35–80

    Chapter  Google Scholar 

  • Maass A, Martínez S (1998) On Cesàro limit distribution of a class of permutative cellular automata. J Stat Phys 90(1–2):435–452

    Article  MATH  Google Scholar 

  • Maass A, Martínez S (1999) Time averages for some classes of expansive one-dimensional cellular automata. In: Cellular automata and complex systems (Santiago, 1996). Nonlinear phenomena and complex systems, vol 3. Kluwer, Dordrecht, pp 37–54

    Google Scholar 

  • Maass A, Martínez S, Pivato M, Yassawi R (2006a) Asymptotic randomization of subgroup shifts by linear cellular automata. Ergodic Theory Dyn Syst 26(4):1203–1224

    Article  MathSciNet  MATH  Google Scholar 

  • Maass A, Martínez S, Pivato M, Yassawi R (2006b) Attractiveness of the Haar measure for the action of linear cellular automata in abelian topological Markov chains. In: Dynamics and stochastics: festschrift in honour of Michael Keane. Lecture notes monograph series of the IMS, vol 48. Institute for Mathematical Statistics, Beachwood, pp 100–108

    Chapter  Google Scholar 

  • Maass A, Martínez S, Sobottka M (2006c) Limit measures for affine cellular automata on topological Markov subgroups. Nonlinearity 19(9):2137–2147. http://stacks.iop.org/0951-7715/19/2137

    Article  MathSciNet  MATH  Google Scholar 

  • Machì A, Mignosi F (1993) Garden of Eden configurations for cellular automata on Cayley graphs of groups. SIAM J Discret Math 6(1):44–56

    Article  MathSciNet  MATH  Google Scholar 

  • Maruoka A, Kimura M (1976) Condition for injectivity of global maps for tessellation automata. Inf Control 32(2):158–162

    Article  MathSciNet  MATH  Google Scholar 

  • Mauldin RD, Skordev G (2000) Random linear cellular automata: fractals associated with random multiplication of polynomials. Jpn J Math (New Ser) 26(2):381–406

    Article  MathSciNet  MATH  Google Scholar 

  • Meester R, Steif JE (2001) Higher-dimensional subshifts of finite type, factor maps and measures of maximal entropy. Pac J Math 200(2):497–510

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor J (1985a) Correction and remarks: “On the concept of attractor”. Commun Math Phys 102(3):517–519

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor J (1985b) On the concept of attractor. Commun Math Phys 99(2):177–195

    Article  MathSciNet  MATH  Google Scholar 

  • Milnor J (1986) Directional entropies of cellular automaton-maps. In: Disordered systems and biological organization (Les Houches, 1985), NATO Advanced Science Institute series. Series F: computer and system sciences, vol 20. Springer, Berlin, pp 113–115

    Google Scholar 

  • Milnor J (1988) On the entropy geometry of cellular automata. Complex Syst 2(3):357–385

    MathSciNet  MATH  Google Scholar 

  • Miyamoto M (1979) An equilibrium state for a one-dimensional lifegame. J Math Kyoto Univ 19(3):525–540

    Article  MathSciNet  MATH  Google Scholar 

  • Moore EF (1963) Machine models of self reproduction. Proc Symp Appl Math 14:17–34

    Article  Google Scholar 

  • Moore C (1997) Quasilinear cellular automata. Phys D 103(1–4):100–132, lattice dynamics (Paris, 1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Moore C (1998) Predicting nonlinear cellular automata quickly by decomposing them into linear ones. Phys D 111(1–4):27–41

    Article  MathSciNet  MATH  Google Scholar 

  • Myhill J (1963) The converse of Moore’s Garden-of-Eden theorem. Proc Am Math Soc 14:685–686

    MathSciNet  MATH  Google Scholar 

  • Nasu M (1995) Textile systems for endomorphisms and automorphisms of the shift. Mem Am Math Soc 114(546):viii+215

    MathSciNet  MATH  Google Scholar 

  • Nasu M (2002) The dynamics of expansive invertible onesided cellular automata. Trans Am Math Soc 354(10):4067–4084 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  • Park KK (1995) Continuity of directional entropy for a class of Z2-actions. J Korean Math Soc 32(3):573–582

    MathSciNet  MATH  Google Scholar 

  • Park KK (1996) Entropy of a skew product with a Z2-action. Pac J Math 172(1):227–241

    Article  MATH  Google Scholar 

  • Park KK (1999) On directional entropy functions. Israel J Math 113:243–267

    Article  MathSciNet  MATH  Google Scholar 

  • Parry W (1964) Intrinsic Markov chains. Trans Am Math Soc 112:55–66

    Article  MathSciNet  MATH  Google Scholar 

  • Pivato M (2003) Multiplicative cellular automata on nilpotent groups: structure, entropy, and asymptotics. J Stat Phys 110(1–2):247–267

    Article  MathSciNet  MATH  Google Scholar 

  • Pivato M (2005a) Cellular automata versus quasisturmian shifts. Ergodic Theory Dyn Syst 25(5):1583–1632

    Article  MathSciNet  MATH  Google Scholar 

  • Pivato M (2005b) Invariant measures for bipermutative cellular automata. Discret Contin Dyn Syst 12(4):723–736

    Article  MathSciNet  MATH  Google Scholar 

  • Pivato M (2007) Spectral domain boundaries cellular automata. Fundam Inform 77(Special issue). http://arxiv.org/abs/math.DS/0507091

  • Pivato M (2008) Module shifts and measure rigidity in linear cellular automata. Ergodic Theory Dyn Syst 28:1945–1958

    Article  MathSciNet  MATH  Google Scholar 

  • Pivato M, Yassawi R (2002) Limit measures for affine cellular automata. Ergodic Theory Dyn Syst 22(4):1269–1287

    Article  MathSciNet  MATH  Google Scholar 

  • Pivato M, Yassawi R (2004) Limit measures for affine cellular automata. II. Ergodic Theory Dyn Syst 24(6):1961–1980

    Article  MathSciNet  MATH  Google Scholar 

  • Pivato M, Yassawi R (2006) Asymptotic randomization of sofic shifts by linear cellular automata. Ergodic Theory Dyn Syst 26(4):1177–1201

    Article  MathSciNet  MATH  Google Scholar 

  • Rudolph DJ (1990) ×2 and ×3 invariant measures and entropy. Ergodic Theory Dyn Syst 10(2):395–406

    Article  MathSciNet  MATH  Google Scholar 

  • Sablik M (2006) Étude de l’action conjointe d’un automate cellulaire et du décalage: Une approche topologique et ergodique. PhD thesis, Université de la Méditerranée, Faculté des science de Luminy, Marseille

    Google Scholar 

  • Sablik M (2008a) Directional dynamics for cellular automata: a sensitivity to initial conditions approach. Theor Comput Sci 400(1–3):1–18

    Article  MathSciNet  MATH  Google Scholar 

  • Sablik M (2008b) Measure rigidity for algebraic bipermutative cellular automata. Ergodic Theory Dyn Syst 27(6):1965–1990

    MathSciNet  MATH  Google Scholar 

  • Sato T (1997) Ergodicity of linear cellular automata over Zm. Inf Process Lett 61(3):169–172

    Article  MATH  Google Scholar 

  • Schmidt K (1995) Dynamical systems of algebraic origin. Progress in mathematics, vol 128. Birkhäuser, Basel

    Book  Google Scholar 

  • Shereshevsky MA (1992a) Ergodic properties of certain surjective cellular automata. Monatsh Math 114(3–4):305–316

    Article  MathSciNet  MATH  Google Scholar 

  • Shereshevsky MA (1992b) Lyapunov exponents for one-dimensional cellular automata. J Nonlinear Sci 2(1):1–8

    Article  MathSciNet  MATH  Google Scholar 

  • Shereshevsky MA (1993) Expansiveness, entropy and polynomial growth for groups acting on subshifts by automorphisms. Indag Math (New Ser) 4(2):203–210

    Article  MathSciNet  MATH  Google Scholar 

  • Shereshevsky MA (1996) On continuous actions commuting with actions of positive entropy. Colloq Math 70(2):265–269

    Article  MathSciNet  MATH  Google Scholar 

  • Shereshevsky MA (1997) K-property of permutative cellular automata. Indag Math (New Ser) 8(3):411–416

    Article  MathSciNet  MATH  Google Scholar 

  • Shereshevsky MA, Afraĭmovich VS (1992/1993) Bipermutative cellular automata are topologically conjugate to the one-sided Bernoulli shift. Random Comput Dyn 1(1):91–98

    MathSciNet  MATH  Google Scholar 

  • Shirvani M, Rogers TD (1991) On ergodic one-dimensional cellular automata. Commun Math Phys 136(3):599–605

    Article  MathSciNet  MATH  Google Scholar 

  • Silberger S (2005) Subshifts of the three dot system. Ergodic Theory Dyn Syst 25(5):1673–1687

    Article  MathSciNet  MATH  Google Scholar 

  • Smillie J (1988) Properties of the directional entropy function for cellular automata. In: Dynamical systems (College Park, 1986–87). Lecture notes in mathematics, vol 1342. Springer, Berlin, pp 689–705

    Google Scholar 

  • Sobottka M (2005) Representación y aleatorización en sistemasdinámicos de tipo algebraico. PhD thesis, Universidad de Chile, Facultad de ciencias físicas y matemáticas, Santiago

    Google Scholar 

  • Sobottka M (2007a) Topological quasi-group shifts. Discret Contin Dyn Syst 17(1):77–93

    Article  MathSciNet  MATH  Google Scholar 

  • Sobottka M (2007b) Right-permutative cellular automata on topological Markov chains. Discret Contin Dyn Syst (to appear ). http://arxiv.org/abs/math/0603326

  • Steif JE (1994) The threshold voter automaton at a critical point. Ann Probab 22(3):1121–1139

    Article  MathSciNet  MATH  Google Scholar 

  • Takahashi S (1990) Cellular automata and multifractals: dimension spectra of linear cellular automata. Phys D 45(1–3):36–48, cellular automata: theory and experiment (Los Alamos, NM, 1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Takahashi S (1992) Self-similarity of linear cellular automata. J Comput Syst Sci 44(1):114–140

    Article  MathSciNet  MATH  Google Scholar 

  • Takahashi S (1993) Cellular automata, fractals and multifractals: space-time patterns and dimension spectra of linear cellular automata. In: Chaos in Australia (Sydney, 1990). World Scientific, River Edge, pp 173–195

    Google Scholar 

  • Tisseur P (2000) Cellular automata and Lyapunov exponents. Nonlinearity 13(5):1547–1560

    Article  MathSciNet  MATH  Google Scholar 

  • von Haeseler F, Peitgen HO, Skordev G (1992) Pascal’s triangle, dynamical systems and attractors. Ergodic Theory Dyn Syst 12(3):479–486

    Article  MathSciNet  MATH  Google Scholar 

  • von Haeseler F, Peitgen HO, Skordev G (1993) Cellular automata, matrix substitutions and fractals. Ann Math Artif Intell 8(3–4):345–362, theorem proving and logic programming (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • von Haeseler F, Peitgen HO, Skordev G (1995a) Global analysis of self-similarity features of cellular automata: selected examples. Phys D 86(1–2):64–80, chaos, order and patterns: aspects of nonlinearity– the “gran finale” (Como, 1993)

    Article  MathSciNet  MATH  Google Scholar 

  • von Haeseler F, Peitgen HO, Skordev G (1995b) Multifractal decompositions of rescaled evolution sets of equivariant cellular automata. Random Comput Dyn 3(1–2):93–119

    MathSciNet  MATH  Google Scholar 

  • von Haeseler F, Peitgen HO, Skordev G (2001a) Self-similar structure of rescaled evolution sets of cellular automata. I. Int J Bifurcat Chaos Appl Sci Eng 11(4):913–926

    Article  MathSciNet  MATH  Google Scholar 

  • von Haeseler F, Peitgen HO, Skordev G (2001b) Self-similar structure of rescaled evolution sets of cellular automata. II. Int J Bifurcat Chaos Appl Sci Eng 11(4):927–941

    Article  MathSciNet  MATH  Google Scholar 

  • Walters P (1982) An introduction to ergodic theory. Graduate texts in mathematics, vol 79. Springer, New York

    Book  Google Scholar 

  • Weiss B (2000) Sofic groups and dynamical systems. Sankhya Ser A 62(3):350–359

    MathSciNet  MATH  Google Scholar 

  • Willson SJ (1975) On the ergodic theory of cellular automata. Math Syst Theory 9(2):132–141

    Article  MathSciNet  MATH  Google Scholar 

  • Willson SJ (1984a) Cellular automata can generate fractals. Discret Appl Math 8(1):91–99

    Article  MathSciNet  MATH  Google Scholar 

  • Willson SJ (1984b) Growth rates and fractional dimensions in cellular automata. Phys D 10(1–2):69–74, cellular automata (Los Alamos, 1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Willson SJ (1986) A use of cellular automata to obtain families of fractals. In: Chaotic dynamics and fractals (Atlanta, 1985). Notes reports on mathematical science and engineering, vol 2. Academic, Orlando, pp 123–140

    Chapter  Google Scholar 

  • Willson SJ (1987a) Computing fractal dimensions for additive cellular automata. Phys D 24(1–3):190–206

    Article  MathSciNet  MATH  Google Scholar 

  • Willson SJ (1987b) The equality of fractional dimensions for certain cellular automata. Phys D 24(1–3):179–189

    Article  MathSciNet  MATH  Google Scholar 

  • Wolfram S (1985) Twenty problems in the theory of cellular automata. Phys Scr 9:1–35

    MathSciNet  MATH  Google Scholar 

  • Wolfram S (1986) Theory and applications of cellular automata. World Scientific, Singapore

    MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank François Blanchard, Mike Boyle, Maurice Courbage, Doug Lind, Petr Kůrka, Servet Martínez, Kyewon Koh Park, Mathieu Sablik, Jeffrey Steif, and Marcelo Sobottka, who read draft versions of this article and made many invaluable suggestions, corrections, and comments. (Any errors which remain are mine.) To Reem.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pivato, M. (2009). Ergodic Theory of Cellular Automata. In: Adamatzky, A. (eds) Cellular Automata. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8700-9_178

Download citation

Publish with us

Policies and ethics