Skip to main content

Transportation Biofuels via the Pyrolysis Pathway: Status and Prospects

  • Reference work entry
  • First Online:
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC 2017

Glossary

Advanced biofuel:

Liquid fuel obtained from nonfood raw materials (such as agriculture and forestry residues, industrial wastes, energy crops, or microorganisms) by different biochemical and/or thermochemical processes.

Biomass:

From a technical point of view, biomass is defined as material of biological origin (animal or vegetal) excluding material embedded in geological formations and/or transformed to fossil.

Bio-oil:

Fraction of pyrolysis vapors that remains liquid at room temperature and composed by hundreds of organic molecules, usually distributed in two phases (water-rich and organic-rich phases).

Catalyst:

A substance that enables a chemical reaction to proceed at a usually faster rate or under different conditions (as at a lower temperature) than otherwise possible.

Hydrodeoxygenation (HDO):

Chemical reaction catalytically conducted for removing oxygen in water form from oxygen containing molecules working at high hydrogen pressures and mild temperatures.

...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  Google Scholar 

  3. Kabir G, Hameed BH (2017) Recent progress on catalytic pyrolysis of lignocellulosic biomass to high- grade bio-oil and bio-chemicals. Renew Sust Energ Rev 70:945–967

    Article  Google Scholar 

  4. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  Google Scholar 

  5. Koizumi T (2015) Biofuels and food security. Renew Sust Energ Rev 52:829–841

    Article  Google Scholar 

  6. Fermoso J, Pizarro P, Coronado JM, Serrano DP (2017) Advanced biofuels production by upgrading of pyrolysis bio-oil. WIREs Energy Environ 6:1–18

    Article  Google Scholar 

  7. Peralta-Yahya PP, Zhang F, del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    Article  Google Scholar 

  8. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  9. Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin DY (2007) Catalytic pyrolysis of biomass in a fluidized bed reactor: influence of the acidity of H-beta zeolite. Process Saf Environ Prot 85:473–480

    Article  Google Scholar 

  10. Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    Article  Google Scholar 

  11. Peterson AA, Vogel F, Lachance RP, Fröling M Jr, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  Google Scholar 

  12. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    Article  Google Scholar 

  13. Elliott DC (2007) Historical developments in hydroprocessing bio-oils. Energy Fuel 21:1792–1815

    Article  Google Scholar 

  14. Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design-a review. Renew Sust Energ Rev 15:366–378

    Article  Google Scholar 

  15. Bomtempo JV, Fagundes De Almeida EL, Bicalho RG (2007) The selection environment for gas to liquids technology and technological strategies: challenging the natural trajectory. In: Cantner U, Malerba F (eds) Innovation, industrial dynamics and structural transformation. Schumpeterian legacies. Springer, Berlin/Heidelberg/Jena, pp 239–253

    Chapter  Google Scholar 

  16. Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140

    Article  Google Scholar 

  17. Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sust Energ Rev 55:467–481

    Article  Google Scholar 

  18. Galadima A, Muraza O (2015) In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review. Energy Convers Manag 105:338–354

    Article  Google Scholar 

  19. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33

    Article  Google Scholar 

  20. Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16:384–406

    Article  Google Scholar 

  21. Oasmaa A, Solantausta Y, Arpiainen V, Kuoppala E, Sipilä K (2010) Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuel 24:1380–1388

    Article  Google Scholar 

  22. Channiwala SA, Parikh PP (2002) A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81:1051–1063

    Article  Google Scholar 

  23. Song J, Hou Y (1995) The properties and utilizations of microcrystalline cellulose. J Cell Sci Technol 3:1–10

    Google Scholar 

  24. Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45:651–671

    Article  Google Scholar 

  25. Roy C, Pakdel H, Brouillard D (1990) The role of extractives during vacuum pyrolysis of wood. J Appl Polym Sci 41:337–348

    Article  Google Scholar 

  26. Kallioinen A, Vaari A, Ratto M, Konn J, Siika-Aho M, Viikari L (2003) Effects of bacterial treatments on wood extractives. J Biotechnol 103:67–76

    Article  Google Scholar 

  27. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  Google Scholar 

  28. Wang K, Zhang J, Shanks BH, Brown RC (2015) The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation. Appl Energy 148:115–120

    Article  Google Scholar 

  29. Akhtar J, Saidina Amin N (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sust Energ Rev 16:5101–5109

    Article  Google Scholar 

  30. Liu C, Wang H, Karim AM, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623

    Article  Google Scholar 

  31. Raveendran K, Ganesh A, Khilar K (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75:987–998

    Article  Google Scholar 

  32. Talmadge MS, Baldwin RM, Biddy MJ, McCormick RL, Beckham GT, Ferguson GA, Czernik S, Magrini-Bair KA, Foust TD, Metelski PD, Hetrick C, Nimlos MR (2014) A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chem 16:407–453

    Article  Google Scholar 

  33. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101:4646–4655

    Article  Google Scholar 

  34. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150

    Article  Google Scholar 

  35. Giudicianni P, Cardone G, Ragucci R (2013) Cellulose, hemicellulose and lignin slow steam pyrolysis: thermal decomposition of biomass components mixtures. J Anal Appl Pyrolysis 100:213–222

    Article  Google Scholar 

  36. Mettler MS, Paulsen AD, Vlachos DG, Dauenhauer PJ (2012) The chain length effect in pyrolysis: bridging the gap between glucose and cellulose. Green Chem 14:1284–1288

    Article  Google Scholar 

  37. Shen DK, Gu S, Luo KH, Wang SR, Fang MX (2010) The pyrolytic degradation of wood-derived lignin from pulping process. Bioresour Technol 101:6136–6146

    Article  Google Scholar 

  38. Fahmi R, Bridgwater AV, Donnison I, Yates N, Jones JM (2008) The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel 87:1230–1240

    Article  Google Scholar 

  39. de Wild PJ, Huijgen WJJ, Heeres HJ (2012) Pyrolysis of wheat straw-derived organosolv lignin. J Anal Appl Pyrolysis 93:95–103

    Article  Google Scholar 

  40. Lin X, Sui S, Tan S, Pittman C, Sun J, Zhang Z (2015) Fast pyrolysis of four lignins from different isolation processes using Py-GC/MS. Energies 8:5107–5121

    Article  Google Scholar 

  41. Mullen CA, Boateng AA (2010) Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process Technol 91:1446–1458

    Article  Google Scholar 

  42. Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P (2010) Lignin fast pyrolysis: results from an international collaboration. J Anal Appl Pyrolysis 88:53–72

    Article  Google Scholar 

  43. Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  Google Scholar 

  44. Mettler MS, Mushrif SH, Paulsen AD, Javadekar AD, Vlachos DG, Dauenhauer PJ (2012) Revealing pyrolysis chemistry for biofuels production: conversion of cellulose to furans and small oxygenates. Energy Environ Sci 5:5414–5424

    Article  Google Scholar 

  45. Wang S, Luo Z (2017) Pyrolysis of biomass. Walter de Gruyter GmbH & Co, Berlin

    Google Scholar 

  46. Key RE, Bozell JJ (2016) Recent progress toward lignin valorization via selective catalytic technologies and the tailoring of its biosynthetic pathways. ACS Sustain Chem Eng 4:5123–5135

    Article  Google Scholar 

  47. Di Blasi C, Signorelli G, Di Russo C, Rea G (1999) Product distribution from pyrolysis of wood and agricultural residues. Ind Eng Chem Res 38:2216–2224

    Article  Google Scholar 

  48. Torri IDV, Paasikallio V, Faccini CS, Huff R, Caramão EB, Sacon V, Oasmaa A, Zini CA (2016) Bio-oil production of softwood and hardwood forest industry residues through fast and intermediate pyrolysis and its chromatographic characterization. Bioresour Technol 200:680–690

    Article  Google Scholar 

  49. Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biore fi nery approach. Renew Sust Energ Rev 55:909–941

    Article  Google Scholar 

  50. Fermoso J, Coronado JM, Serrano DP, Pizarro P (2017) Pyrolysis of microalgae for fuel production. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels bioprod. Woodhead Publishing, Elsevier Ltd, Duxford, pp 259–282

    Google Scholar 

  51. Chiaramonti D, Prussi M, Buffi M, Maria A, Pari L (2016) Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl Energy 185:1–10

    Google Scholar 

  52. López-González D, Puig-Gamero M, Acién FG, García-Cuadra F, Valverde JL, Sanchez-Silva L (2015) Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils. Renew Sust Energ Rev 51:1752–1770

    Article  Google Scholar 

  53. Das P, Ganesh A, Wangikar P (2004) Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenergy 27:445–457

    Article  Google Scholar 

  54. Wigley T, Yip ACK, Pang S (2016) Pretreating biomass via demineralisation and torrefaction to improve the quality of crude pyrolysis oil. Energy 109:481–494

    Article  Google Scholar 

  55. Stefanidis SD, Heracleous E, Patiaka DT, Kalogiannis KG, Michailof CM, Lappas AA (2015) Optimization of bio-oil yields by demineralization of low quality biomass. Biomass Bioenergy 83:105–115

    Article  Google Scholar 

  56. Eom IY, Kim JY, Kim TS, Lee SM, Choi D, Choi IG, Choi JW (2012) Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresour Technol 104:687–694

    Article  Google Scholar 

  57. Eom I-Y, Kim J-Y, Lee S-M, Cho T-S, Yeo H, Choi J-W (2013) Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza sativa L.) by fluidized bed pyrolyzer for future biorefinery approach. Bioresour Technol 128:664–672

    Article  Google Scholar 

  58. Tan H, Wang S (2009) Experimental study of the effect of acid-washing pretreatment on biomass pyrolysis. J Fuel Chem Technol 37:668–672

    Article  Google Scholar 

  59. Fermoso J, Hernando H, Jimenez-Sanchez S, Lappas AA, Heracleous E, Pizarro P, Coronado JM, Serrano DP (under revision) Bio-oil production by lignocellulose fast-pyrolysis: isolating and comparing the effects of indigenous versus external catalysts. Fuel Process Technol

    Google Scholar 

  60. Raveendran K, Ganesh A, Khilar K (1995) Influence of mineral matter on biomass pyrolysis characteristics. Fuel 74:1812–1822

    Article  Google Scholar 

  61. Jensen A, Dam-Johansen K, Wójtowicz MA, Serio MA (1998) TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis. Energy Fuel 12:929–938

    Article  Google Scholar 

  62. Pan W-P, Richards GN (1989) Influence of metal ions on volatile of pyrolysis of wood products. J Anal Appl Pyrolysis 16:117–126

    Article  Google Scholar 

  63. Chen D, Li Y, Deng M, Wang J, Chen M, Yan B, Yuan Q (2016) Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood. Bioresour Technol 214:615–622

    Article  Google Scholar 

  64. Wafiq A, Reichel D, Hanafy M (2016) Pressure influence on pyrolysis product properties of raw and torrefied Miscanthus: role of particle structure. Fuel 179:156–167

    Article  Google Scholar 

  65. Mi B, Liu Z, Hu W, Wei P, Jiang Z, Fei B (2016) Investigating pyrolysis and combustion characteristics of torrefied bamboo, torrefied wood and their blends. Bioresour Technol 209:50–55

    Article  Google Scholar 

  66. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ (2011) Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy 35:3748–3762

    Google Scholar 

  67. Chew JJ, Doshi V (2011) Recent advances in biomass pretreatment – torrefaction fundamentals and technology. Renew Sust Energ Rev 15:4212–4222

    Article  Google Scholar 

  68. Zheng A, Zhao Z, Chang S, Huang Z, He F, Li H (2012) Effect of torrefaction temperature on product distribution from two-staged pyrolysis of biomass. Energy Fuels 26:2968–2974

    Article  Google Scholar 

  69. Meng J, Park J, Tilotta D, Park S (2012) The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil. Bioresour Technol 111:439–446

    Article  Google Scholar 

  70. Wigley T, Yip ACK, Pang S (2015) The use of demineralisation and torrefaction to improve the properties of biomass intended as a feedstock for fast pyrolysis. J Anal Appl Pyrolysis 113:296–306

    Article  Google Scholar 

  71. Bridgwater AV, Czernik S, Piskorz J (2001) An overviwe of fast pyrolysis. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion. Blackwell Sciences, Oxford, UK, pp 977–997

    Chapter  Google Scholar 

  72. Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis- a technological review. Energies 5:4952–5001

    Article  Google Scholar 

  73. Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis – a review of modelling, process parameters and catalytic studies. Renew Sust Energ Rev 50:1081–1096

    Article  Google Scholar 

  74. Vamvuka D (2011) Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes-an overview. Int J Energy Res 35:835–862

    Article  Google Scholar 

  75. Hornung A (2012) Biomass pyrolysis. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer, New York, pp 1517–1531

    Chapter  Google Scholar 

  76. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  Google Scholar 

  77. Hernando H, Jiménez-Sánchez S, Fermoso J, Pizarro P, Coronado JM, Serrano DP (2016) Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Cat Sci Technol 6:2829–2843

    Article  Google Scholar 

  78. Strezov V, Moghtaderi B, Lucas JA (2003) Thermal study of decomposition of selected biomass samples. J Therm Anal Calorim 72:1041–1048

    Article  Google Scholar 

  79. Scott DS, Majerski P, Piskorz J, Radlein D (1999) A second look at fast pyrolysis of biomass – the RTI process. J Anal Appl Pyrolysis 51:23–37

    Article  Google Scholar 

  80. Encinar JM, González JF, González J (2000) Fixed-bed pyrolysis of Cynara cardunculus L. product yields and compositions. Fuel Process Technol 68:209–222

    Article  Google Scholar 

  81. Maggi R, Delmon B (1994) Comparison between “slow” and “flash” pyrolysis oils from biomass. Fuel 73:671–677

    Article  Google Scholar 

  82. Demiral İ, Şensöz S (2006) Fixed-bed pyrolysis of hazelnut ( Corylus Avellana L.) bagasse: influence of pyrolysis parameters on product yields. Energy Sources Part A 28:1149–1158

    Article  Google Scholar 

  83. Pütün AE, Apaydm E, Pütün E (2004) Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy 29:2171–2180

    Article  Google Scholar 

  84. Luque R, Menéndez JA, Arenillas A, Cot J (2012) Microwave-assisted pyrolysis of biomass feedstocks: the way forward? Energy Environ Sci 5:5481–5488

    Article  Google Scholar 

  85. Meier D, van de Beld B, Bridgwater AV, Elliott DC, Oasmaa A, Preto F (2013) State-of-the-art of fast pyrolysis in IEA bioenergy member countries. Renew Sust Energ Rev 20:619–641

    Article  Google Scholar 

  86. Hita I, Arabiourrutia M, Olazar M, Bilbao J, Arandes JM, Castaño Sánchez P (2016) Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renew Sust Energ Rev 56:745–759

    Article  Google Scholar 

  87. Zhang H, Xiao R, Huang H, Xiao G (2009) Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Bioresour Technol 100:1428–1434

    Article  Google Scholar 

  88. Heo HS, Park HJ, Park Y-K, Ryu C, Suh DJ, Suh Y-W, Yim J-H, Kim S-S (2010) Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Bioresour Technol 101:S91–S96

    Article  Google Scholar 

  89. Heidari A, Stahl R, Younesi H, Rashidi A, Troeger N, Ghoreyshi AA (2013) Effect of process conditions on product yield and composition of fast pyrolysis of Eucalyptus grandis in fluidized bed reactor. J Ind Eng Chem 20:2594–2602

    Article  Google Scholar 

  90. Dai X, Yin X, Wu C, Zhang W, Chen Y (2001) Pyrolysis of waste tires in a circulating fluidized-bed reactor. Energy 26:385–399

    Article  Google Scholar 

  91. Uzun BB, Pütün AE, Pütün E (2007) Rapid pyrolysis of olive residue. 1. Effect of heat and mass transfer limitations on product yields and bio-oil compositions. Energy Fuel 21:1768–1776

    Article  Google Scholar 

  92. Dijk PE, Janse AMC, Kuipers JAM, van Swaaij WPM (2015) Hydrodynamics of liquid flow in a rotating cone. Int J Numer Methods Heat Fluid Flow 11:386–412

    Article  MATH  Google Scholar 

  93. Johansson AC, Wiinikka H, Sandström L, Marklund M, Öhrman OGW, Narvesjö J (2016) Characterization of pyrolysis products produced from different Nordic biomass types in a cyclone pilot plant. Fuel Process Technol 146:9–19

    Article  Google Scholar 

  94. Henrich E, Dahmen N, Weirich F, Reimert R, Kornmayer C (2016) Fast pyrolysis of lignocellulosics in a twin screw mixer reactor. Fuel Process Technol 143:151–161

    Article  Google Scholar 

  95. Brown JN, Brown RC (2012) Process optimization of an auger pyrolyzer with heat carrier using response surface methodology. Bioresour Technol 103:405–414

    Article  Google Scholar 

  96. Ingram L, Mohan D, Bricka M, Steele P, Strobel D, Mitchell B, Mohammad J, Cantrell K, Jr CUP, Ingram L, Mohan D, Bricka M, Steele P, Strobel D, Crocker D, Mitchell B, Mohammad J, Cantrell K, Pittman CU (2008) Pyrolysis of wood and bark in an auger Reactor: physical properties and chemical analysis of the produced bio-oils pyrolysis of wood and bark in an auger reactor: physical properties and chemical analysis of the produced bio-oils. Energy Fuel 22:614–625

    Article  Google Scholar 

  97. Ellens CJ, Brown RC (2012) Optimization of a free-fall reactor for the production of fast pyrolysis bio-oil. Bioresour Technol 103:374–380

    Article  Google Scholar 

  98. Zhang B, Zhong Z, Chen P, Ruan R (2015) Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst. Bioresour Technol 197:79–84

    Article  Google Scholar 

  99. Bartoli M, Rosi L, Giovannelli A, Frediani P, Frediani M (2015) Bio-oil from residues of short rotation coppice of poplar using a microwave assisted pyrolysis. J Anal Appl Pyrolysis 119:224–232

    Article  Google Scholar 

  100. Mohamed BA, Kim CS, Ellis N, Bi X (2016) Microwave-assisted catalytic pyrolysis of switchgrass for improving bio-oil and biochar properties. Bioresour Technol 201:121–132

    Article  Google Scholar 

  101. Amutio M, Lopez G, Aguado R, Artetxe M, Bilbao J, Olazar M (2011) Effect of vacuum on lignocellulosic biomass flash pyrolysis in a conical spouted bed reactor. Energy Fuel 25:3950–3960

    Article  Google Scholar 

  102. Papari S, Hawboldt K (2015) A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew Sust Energ Rev 52:1580–1595

    Article  Google Scholar 

  103. Prins W, Wagenaar B (1997) Review of rotating cone technology for flash pyrolysis of biomass. In: Kaltschmitt M, Bridgwater A (eds) Biomass gasif pyrolysis. CPL Scientific Ltd, Newbury, pp 316–326

    Google Scholar 

  104. Wagenaar B, Vederbosch R, Carrasco J, Strenziok R, van der Aa B (2001) Rotating cone bio-oil production and applications. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion. Blackwell Sciences, Oxford, UK, pp 1268–1280

    Chapter  Google Scholar 

  105. Deng C, Liu RH, Cai JM (2008) State of art of biomass fast pyrolysis for bio-oil in China: a review. J Energy Inst 81:211–217

    Article  Google Scholar 

  106. Dickerson T, Soria J (2013) Catalytic fast pyrolysis: a review. Energies 6:514–538

    Article  Google Scholar 

  107. Czernik S, Bridgwater A (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  Google Scholar 

  108. Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48:87–92

    Article  Google Scholar 

  109. Ruddy DA, Schaidle JA, Ferrell JR III, Wang J, Moens L, Hensley JE (2014) Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: catalyst development through the study of model compounds. Green Chem 16:454–490

    Article  Google Scholar 

  110. Wang K, Kim KH, Brown RC (2014) Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem 16:727–735

    Article  Google Scholar 

  111. Czernik S, Johnson DK, Black S (1994) Stability of wood fast pyrolysis oil. Biomass Bioenergy 7:187–192

    Article  Google Scholar 

  112. Diebold J (2002) A review of the chemical and physical mechanisms of the storage stability of fast pyrolysis bio-oils. In: Bridgwater AV (ed) Fast pyrolysis biomass, a handbook, vol 2. CPL Press, Newbury, pp 243–292

    Google Scholar 

  113. Baldwin RM, Feik CJ (2013) Bio-oil stabilization and upgrading by hot gas filtration. Energy Fuels 27:3224–3238

    Article  Google Scholar 

  114. Zhang H, Shao S, Jiang Y, Vitidsant T, Reubroycharoen P, Xiao R (2017) Improving hydrocarbon yield by two-step pyrolysis of pinewood in a fluidized-bed reactor. Fuel Process Technol 159:19–26

    Article  Google Scholar 

  115. Paasikallio V, Kalogiannis K, Lappas A, Lehto J, Lehtonen J (2016) Catalytic fast pyrolysis: influencing bio-oil quality with the catalyst-to-biomass ratio. Energy Technol 5:1–11

    Google Scholar 

  116. Veses A, Aznar M, Martínez I, Martínez JD, López JM, Navarro MV, Callén MS, Murillo R, García T (2014) Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresour Technol 162:250–258

    Article  Google Scholar 

  117. Veses A, Aznar M, López JM, Callén MS, Murillo R, García T (2015) Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel 141:17–22

    Article  Google Scholar 

  118. Veses A, Aznar M, Callén MS, Murillo R, García T (2016) An integrated process for the production of lignocellulosic biomass pyrolysis oils using calcined limestone as a heat carrier with catalytic properties. Fuel 181:430–437

    Article  Google Scholar 

  119. Imran A, Bramer EA, Seshan K, Brem G (2016) Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts. J Anal Appl Pyrolysis 117:236–246

    Article  Google Scholar 

  120. Triantafyllidis KS, Iliopoulou EF, Antonakou EV, Lappas AA, Wang H, Pinnavaia TJ (2007) Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis. Microporous Mesoporous Mater 99:132–139

    Article  Google Scholar 

  121. Christoforou EA, Fokaides PA, Banks SW, Nowakowski D, Bridgwater AV, Stefanidis S, Kalogiannis KG, Iliopoulou EF, Lappas AA (2017) Comparative study on catalytic and non-catalytic pyrolysis of olive mill solid wastes. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-016-9809-5

  122. Gurevich Messina LI, Bonelli PR, Cukierman AL (2017) In-situ catalytic pyrolysis of peanut shells using modified natural zeolite. Fuel Process Technol 159:160–167

    Article  Google Scholar 

  123. Mante OD, Agblevor FA (2014) Catalytic pyrolysis for the production of refinery-ready biocrude oils from six different biomass sources. Green Chem 16:3364–3377

    Article  Google Scholar 

  124. Lorenzetti C, Conti R, Fabbri D, Yanik J (2016) A comparative study on the catalytic effect of H-ZSM5 on upgrading of pyrolysis vapors derived from lignocellulosic and proteinaceous biomass. Fuel 166:446–452

    Article  Google Scholar 

  125. Gayubo AG, Aguayo AT, Atutxa A, Aguado R, Bilbao J (2004) Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Ind Eng Chem Res 43:2610–2619

    Article  Google Scholar 

  126. Mullen CA, Boateng AA (2013) Accumulation of inorganic impurities on HZSM-5 zeolites during catalytic fast pyrolysis of switchgrass. Ind Eng Chem Res 52:17156–17161

    Article  Google Scholar 

  127. Rezaei PS, Shafaghat H, Daud WMAW (2014) Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review. Appl Catal A Gen 469:490–511

    Article  Google Scholar 

  128. Milovanovic J, Stensrød R, Myhrvold E, Tschentscher R, Stöcker M, Lazarevic S, Rajic N (2015) Modification of natural clinoptilolite and ZSM-5 with different oxides and studying of the obtained products in lignin pyrolysis. J Serb Chem Soc 80:717–729

    Article  Google Scholar 

  129. Ma Z, Troussard E, van Bokhoven JA (2012) Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis. Appl Catal A Gen 423–424:130–136

    Article  Google Scholar 

  130. Serrano DP, Escola JM, Pizarro P (2013) Synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev 42:4004–4035

    Article  Google Scholar 

  131. Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542

    Article  Google Scholar 

  132. Hoff TC, Gardner DW, Thilakaratne R, Proano-Aviles J, Brown RC, Tessonnier JP (2017) Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis. Appl Catal A Gen 529:68–78

    Article  Google Scholar 

  133. Nguyen TS, Zabeti M, Lefferts L, Brem G, Seshan K (2013) Catalytic upgrading of biomass pyrolysis vapours using faujasite zeolite catalysts. Biomass Bioenergy 48:100–110

    Article  Google Scholar 

  134. Mullen CA, Tarves PC, Boateng AA (2017) Role of potassium exchange in catalytic pyrolysis of biomass over ZSM-5: formation of alkyl phenols and furans. ACS Sustain Chem Eng 5:2154–2162

    Article  Google Scholar 

  135. Schultz EL, Mullen CA, Boateng AA (2017) Aromatic hydrocarbon production from eucalyptus urophylla pyrolysis over several metal-modified ZSM-5 catalysts. Energy Technol 5:196–204

    Article  Google Scholar 

  136. Ji X, Liu B, Ma W, Chen G, Yan B, Cheng Z (2017) Effect of MgO promoter on Ni-Mg/ZSM-5 catalysts for catalytic pyrolysis of lipid-extracted residue of Tribonema minus. J Anal Appl Pyrolysis 123:278–283

    Article  Google Scholar 

  137. Wang S, Cai Q, Chen J, Zhang L, Wang X, Yu C (2014) Green aromatic hydrocarbon production from Cocracking of a bio-oil model compound mixture and ethanol over Ga2O3/HZSM-5. Ind Eng Chem Res 53:13935–13944

    Article  Google Scholar 

  138. Serrano DP, Escola JM, Pizarro P (2015) Development of hierarchical porosity in zeolites by using Organosilane-based strategies. In: García-Martínez J, Li K (eds) Mesoporous zeolites: preparation, characterization and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 157–198

    Chapter  Google Scholar 

  139. Lu Q, Zhang ZF, Dong CQ, Zhu XF (2010) Catalytic upgrading of biomass fast pyrolysis Vapors with Pd/SBA-15 catalysts. Ind Eng Chem Res 49:2573–2580

    Article  Google Scholar 

  140. Muley PD, Henkel CE, Aguilar G, Klasson KT, Boldor D (2016) Ex situ thermo-catalytic upgrading of biomass pyrolysis vapors using a traveling wave microwave reactor. Appl Energy 183:995–1004

    Article  Google Scholar 

  141. Morgan HM, Bu Q, Liang J, Liu Y, Mao H, Shi A, Lei H, Ruan R (2017) A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals. Bioresour Technol 230:112–121

    Article  Google Scholar 

  142. Liu S, Zhang Y, Fan L, Zhou N, Tian G, Zhu X, Cheng Y, Wang Y, Liu Y, Chen P, Ruan R (2017) Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis. Fuel 196:261–268

    Article  Google Scholar 

  143. Oasmaa A, Van De Beld B, Saari P, Elliott DC, Solantausta Y (2015) Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass. Energy Fuels 29:2471–2484

    Article  Google Scholar 

  144. Lujaji FC, Boateng AA, Schaffer MA, Mullen CA, Mkilaha ISN, Mtui PL (2016) Pyrolysis oil combustion in a horizontal box furnace with an externally mixed nozzle. Energy Fuels 30:4126–4136

    Article  Google Scholar 

  145. Lehto J, Oasmaa A, Solantausta Y, Kyto M, Chiaramonti D (2014) Review of fuel oil quality and combustion of fast pyrolysis bio-oils from lignocellulosic biomass. Appl Energy 116:178–190

    Article  Google Scholar 

  146. Pattiya A, Suttibak S (2012) Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues. Bioresour Technol 116:107–113

    Article  Google Scholar 

  147. Javaid A, Ryan T, Berg G, Pan X, Vispute T, Bhatia SR, Huber GW, Ford DM (2010) Removal of char particles from fast pyrolysis bio-oil by microfiltration. J Membr Sci 363:120–127

    Article  Google Scholar 

  148. Lin BJ, Chen WH, Budzianowski WM, Hsieh CT, Lin PH (2016) Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers. Appl Energy 178:746–757

    Article  Google Scholar 

  149. Kim JS (2015) Production, separation and applications of phenolic-rich bio-oil – a review. Bioresour Technol 178:90–98

    Article  Google Scholar 

  150. Guo Z, Wang S, Gu Y, Xu G, Li X, Luo Z (2010) Separation characteristics of biomass pyrolysis oil in molecular distillation. Sep Purif Technol 76:52–57

    Article  Google Scholar 

  151. Wang JJ, Chang J, Fan J (2010) Upgrading of bio-oil by catalytic esterification and determination of acid number for evaluating esterification degree. Energy Fuels 24:3251–3255

    Article  Google Scholar 

  152. Junming X, Jianchun J, Yunjuan S, Yanju L (2008) Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics. Biomass Bioenergy 32:1056–1061

    Article  Google Scholar 

  153. Puertolas B, Keller TC, Mitchell S, Perez-Ramirez J (2016) Deoxygenation of bio-oil over solid base catalysts: from model to realistic feeds. Appl Catal B Environ 184:77–86

    Article  Google Scholar 

  154. Mansur D, Yoshikawa T, Norinaga K, Hayashi JI, Tago T, Masuda T (2013) Production of ketones from pyroligneous acid of woody biomass pyrolysis over an iron-oxide catalyst. Fuel 103:130–134

    Article  Google Scholar 

  155. Veses A, Puértolas B, López JM, Callén MS, Solsona B, García T (2016) Promoting deoxygenation of bio-oil by metal-loaded hierarchical ZSM-5 zeolites. ACS Sustain Chem Eng 4:1653–1660

    Article  Google Scholar 

  156. Saidi M, Samimi F, Karimipourfard D, Nimmanwudipong T, Gates BC, Rahimpour MR (2014) Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ Sci 7:103–129

    Article  Google Scholar 

  157. Patel M, Kumar A (2016) Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: a review. Renew Sust Energ Rev 58:1293–1307

    Article  MathSciNet  Google Scholar 

  158. Berenguer A, Thangaraju S, Gomez G, Moreno I, Coronado J, Pizarro P, Serrano DP (2015) Evaluation of transition metal phosphides supported on ordered mesoporous materials as catalysts for phenol hydrodeoxygenation. Green Chem 18:1938–1951

    Article  Google Scholar 

  159. Yang Y, Ochoa-Hernández C, de la Peña O’Shea VA, Pizarro P, Coronado JM, Serrano DP (2014) Effect of metal-support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts. Appl Catal B Environ 145:91–100

    Article  Google Scholar 

  160. Lee H, Kim H, Yu MJ, Ko CH, Jeon J-K, Jae J, Park SH, Jung S-C, Park Y-K (2016) Catalytic Hydrodeoxygenation of bio-oil model compounds over Pt/HY catalyst. Sci Rep 6:28765

    Article  Google Scholar 

  161. Cordero-Lanzac T, Palos R, Arandes JM, Castaño P, Rodriguez-Mirasol J, Cordero T, Bilbao J (2017) Stability of an acid activated carbon based bifunctional catalyst for the raw bio-oil hydrodeoxygenation. Appl Catal B Environ 203:389–399

    Article  Google Scholar 

  162. Sanna A, Vispute TP, Huber GW (2015) Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts. Appl Catal B Environ 165:446–456

    Article  Google Scholar 

  163. Cruz PL, Montero E, Dufour J (2017) Modelling of co-processing of HDO-oil with VGO in a FCC unit. Fuel 196:362–370

    Article  Google Scholar 

  164. de Miguel MF, Groeneveld MJ, Kersten SRA, Way NWJ, Schaverien CJ, Hogendoorn JA (2010) Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units. Appl Catal B Environ 96:57–66

    Article  Google Scholar 

  165. Al-Sabawi M, Chen J, Ng S (2012) Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: a review. Energy Fuel 26:5355–5372

    Article  Google Scholar 

  166. Pinho ADR, De Almeida MBB, Mendes FL, Ximenes VL, Casavechia LC (2015) Co-processing raw bio-oil and gasoil in an FCC unit. Fuel Process Technol 131:159–166

    Article  Google Scholar 

  167. Thegarid N, Fogassy G, Schuurman Y, Mirodatos C, Stefanidis S, Iliopoulou EF, Kalogiannis K, Lappas AA (2014) Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units. Appl Catal B Environ 145:161–166

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Serrano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fermoso, J., Pizarro, P., Coronado, J.M., Serrano, D.P. (2019). Transportation Biofuels via the Pyrolysis Pathway: Status and Prospects. In: Kaltschmitt, M. (eds) Energy from Organic Materials (Biomass). Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7813-7_963

Download citation

Publish with us

Policies and ethics