Skip to main content

Biomass Energy Small-Scale Combined Heat and Power Systems

  • Reference work entry
  • First Online:
Energy from Organic Materials (Biomass)
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC 2017

Glossary

Cogeneration:

Cogeneration (combined heat and power – CHP) describes the use of one source of energy within a conversion plant for the simultaneous supply of thermal and electrical energy.

Plant operating mode:

Small-scale and micro-CHP plants can be operated in three main modes and various mixtures of these main modes. Here a heat- and a power-controlled operation are distinguished.

 • Heat-controlled operation means an operation of the plant according to the thermal energy demand of the heat consumer, while power is generated as a by-product.

 • In power-controlled operation mode, electricity is the main product of the plant, while the amount of heat which cannot be used directly is stored for later usage or is disposed by a cooler.

Based on an increasing amount of fluctuating renewable energy sources like wind and solar in the energy supply system, flexibility and coupling of energy sectors gain relevance. Therefore, especially for storable but limited sustainable biomass...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Ortwein A, Lenz V (2015) Flexible power generation from solid biofuels. In: Thrän D (ed) Smart bioenergy: technologies and concepts for a more flexible bioenergy provision in future energy systems. Springer International Publishing, Cham, pp 49–66

    Google Scholar 

  2. Lenz V, Ortwein A (2017) SmartBiomassHeat – heat from solid biofuels as an integral part of a future energy system based on Renewables. Chem Eng Technol 40(2):313–322

    Article  Google Scholar 

  3. Thrän D, Dotzauer M, Lenz V, Liebetrau J, Ortwein A et al (2015) Energ Sustain Soc 5(1):21

    Article  Google Scholar 

  4. IEA International Energy Agency (2014) Linking heat and electricity systems: co-generation and district heating and cooling solutions for a clean energy future. IEA International Energy Agency, Paris

    Google Scholar 

  5. Eurostat. Combined heat and power generation. [Online] Available: http://ec.europa.eu/eurostat/web/products-datasets/-/tsdcc350. Accessed 06 Apr 2017

  6. Overton TW. Global CHP still struggling to break out of its niche. [Online]. .Available: http://www.powermag.com/global-chp-still-struggling-to-break-out-of-its-niche/?printmode=1. Accessed 06 Apr 2017

  7. Mertens L, Jossart J-M (eds) (2014) Strategic research priorities for biomass technology. European Technology Platform on Renewable Heating and Cooling, Brussels

    Google Scholar 

  8. IEA International Energy Agency (2014) Energy policies beyond IEA countries: Russia 2014, Paris: International Energy Agency (IEA)

    Google Scholar 

  9. U.S. Environmental Protection Agency (EPA). Combined heat and power (CHP) partnership: about the CHP partnership. [Online]. Available: https://www.epa.gov/chp/about-chp-partnership. Accessed 11 Apr 2017

  10. IEA International Energy Agency (2014) The IEA CHP and DHC collaborative: CHP/DHC country scorecard: United States. Paris

    Google Scholar 

  11. IEA International Energy Agency (2015) Energy policies of IEA countries: Canada 2015 review. IEA International Energy Agency, Paris

    Google Scholar 

  12. E4tech (2015) The fuel cell industry review 2015. E4tech, London

    Google Scholar 

  13. Spanner Re2 (Renewable Energy Experts) GmbH. Homepage [Online]. Available: http://www.holz-kraft.com. Accessed 17 May 2017

  14. Schramm U (2016) Spanner Re2 is renewable energies company of the year, Neufahrn: Spanner Re2

    Google Scholar 

  15. Noël Y, Monath N, Stockschläder J (2015) Mini-Bio KWK: Entwicklung eines Holzvergaser-BHKW zum Einsatz Restholzpellets vom Prototypen in die Serienreife. In: Tagungsband: Beiträge zum Fachkolloquium “Biomass to Power and Heat”, Hochschule Görlitz/Zittau; Zittaupp 108–121

    Google Scholar 

  16. Prando D, Rizzo AM, Gasparella A, Chiaramonti D, Baratieri M. Monitoring of two CHP systems based on biomass in northern Italy: boiler-ORC and gasifier-ICE, Rio de Janeiro, 25 Aug 2014

    Google Scholar 

  17. Entrade, Products. [Online]. .Available: http://www.entrade-e3.co.uk/products.html. Accessed 13 Apr 2017

  18. Fröling GmbH Fixed-bed gasifier CHP50: information sheet

    Google Scholar 

  19. GLOCK Ökoenergie. Glock Öko Wood gasifier system. [Online]. .Available: http://www.glock-oeko.at/en/Products/GGV1_7. Accessed 13 Apr 2017

  20. Hargassner. Kraft-Wärme-Kopplung von Hargassner Heiztechnik. [Online]. Available: https://www.hargassner.at/heizung/Article/ID/414/Session/1-q9LWDDK8-0-IP/Kraft-W%C3%A4rme-Kopplung_KWK.htm. Accessed 13 Apr 2017

  21. Volter Oy. Volter indoor model. [Online]. .Available: http://volter.fi/portfolio/volter-indoor-model/. Accessed 13 Apr 2017

  22. Ortwein A (2016) Combined heat and power systems for the provision of sustainable energy from biomass in buildings. E3S Web Conf 10: 134

    Google Scholar 

  23. Krüger D, Ortwein A (2015) Motormanagement zur flexiblen Fahrweise von Schwachgas-Kraft-Wärme-Kopplungs-Anlagen am Beispiel der Vergasung von Holzkohle. In: Tagungsband: Beiträge zum Fachkolloquium “Biomass to Power and Heat”, pp 88–93

    Google Scholar 

  24. Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3rd edn. Springer Vieweg, Berlin/Heidelberg

    Google Scholar 

  25. ÖkoFEN Forschungs- und Entwicklungs Ges.m.b.H.. Homepage [Online]. Available: http://www.okofen-e.com. Accessed 17 May 2017

  26. Microgen Engine Corporation. Homepage [Online]. Available: http://www.microgen-engine.com/. Accessed 17 May 2017

  27. ÖkoFEN Heiztechnik GmbH, Pellematic Smart_e: Strom erzeugende Pelletsheizung. [Online]. Available: http://www.pelletsheizung.at/de/pellematic_smart_e/. Accessed 12 Apr 2017

  28. ÖkoFEN Forschungs- und Entwicklungs Ges.m.b.H., Pellematic e-max | ÖkoFEN_e. [Online]. Available: http://www.okofen-e.com/de/pellematic_e_max. Accessed 06 Mar 2017

  29. Qnergy, QB7500 Cogeneration System

    Google Scholar 

  30. Steimle F, Lamprichs J, Beck P (2007) Stirling – Maschinen-Technik: Grundlagen, Konzepte, Entwicklungen und Anwendungen, 2nd edn. Müller (C.F.), Heidelberg

    Google Scholar 

  31. Cleanergy AB. Homepage [Online]. Available: http://cleanergy.com/. Accessed 17 May 2017

  32. Bioenergy 2020+ GmbH. StirBio – Entwicklung einer Biomasse-Versuchsfeuerung zur Integration eines Stirling-Moduls. [Online]. Available: https://www.bioenergy2020.eu/news/view/180. Accessed 13 Apr 2017

  33. Höftberger E. Entwicklung einer Versuchsfeuerung mit optimierten Wärmetauscher zur Integration eines Stirling-Moduls, St. Pölten, 11 Apr 2016

    Google Scholar 

  34. Kuhaupt R Erfahrungsbericht über ein Holzpellet-Stirling-BHKW der Firma Sunmachine (Entwicklungsstand 2006), Allendorf (Eder)

    Google Scholar 

  35. Thiers S, Aoun B, Peuportier B (2010) Experimental characterization, modeling and simulation of a wood pellet micro-combined heat and power unit used as a heat source for a residential building. Energ Buildings 42(6):896–903

    Article  Google Scholar 

  36. Stanzel KW (2006) Stromerzeugung im Einfamilienhaus: Strom und Wärme zu Hause selbst aus Holzpellets erzeugen. Stirlingpowermodule Energieumwandlungs GmbH, Graz

    Google Scholar 

  37. Spilling Technologies, Steam Engines. [Online]. Available: http://www.spilling.info/products/steam-engines.html. Accessed 18 May 2017

  38. Bouvenot J-B et al (2014) Dynamic model based on experimental investigations of a wood pellet steam engine micro CHP for building energy simulation. Appl Therm Eng 73(1):1041–1054

    Article  Google Scholar 

  39. energytech.at (2002) Technologieportrait Kraft-Wärme-Kopplung, Institut für Thermische Turbomaschinen und Maschinendynamik, Technische Universität Graz, Wien

    Google Scholar 

  40. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 2nd edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  41. Kötting J (1999) Strom aus fester Biomasse – Der neue Dampfschraubenmotor, klein und wirtschaftlich: Planung und Wirtschaftlichkeit eines Hackschnitzelheiz(−kraft)werkes mit Nahwärmenetz, Göttingen, BENO Bioenergie Niedersachsen

    Google Scholar 

  42. Singhal SC (2014) Solid oxide fuel cells for power generation. WENE 3(2):179–194

    Article  MathSciNet  Google Scholar 

  43. Kurzweil P (2013) Brennstoffzellentechnik: Grundlagen, Komponenten, Systeme, Anwendungen, 2nd edn. Springer, Wiesbaden

    Book  Google Scholar 

  44. Schweiger A, Hohenwarter U, Karl J (2006) Verstromung von Biomasse-Produktgasen in Solid Oxide Fuel Cells. In: 9. Symposium Energieinnovation, pp 198–210

    Google Scholar 

  45. Schweiger A, Saule M, Karl J (2008) Thermodynamische Bewertung zur Integration einer SOFC mit Heißgasreinigung in ein Biomasse basierendes Vergasungssystem, TU Graz

    Google Scholar 

  46. Windhager Zentralheizungen. FlexiFuel-SOFC: development of a new and high efficient micro-scale CHP system based on fuel-flexible gasification and a SOFC. [Online]. Available: http://flexifuelsofc.eu/. Accessed 13 Apr 2017

  47. Gao HB, Huang GH, Li HJ, Qu ZG, Zhang YJ (2016) Development of stove-powered thermoelectric generators: a review. Appl Therm Eng 96:297–310

    Article  Google Scholar 

  48. Sornek K, Filipowicz M, Rzepka K (2016) The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems. Energy Convers Manag 125:185–193

    Article  Google Scholar 

  49. Moser W, Friedl G, Haslinger W, Hofbauer H (2006) Small-scale pellet boiler with thermoelectric generator. In: 25th International Conference on Thermoelectrics (ICT 2006): XXV international conference on thermoelectrics, 6–10 Aug 2006; Marriott Hotel, Vienna. IEEE, Piscataway, pp 349–353

    Chapter  Google Scholar 

  50. Moser W, Friedl G, Aigenbauer S, Heckmann M (2008) A biomass-fuel based micro-scale CHP system with thermoelectric cenerators, Graz, Austrian Biomass Association

    Google Scholar 

  51. Energieinstitut Linz, ModiSys Power: Entwicklung einer Mikro-Kraft-Wärme-Kopplung mit Thermogeneratoren als modulares integratives system für Biomasskessel. [Online]. Available: http://www.energieinstitut-linz.at/v2/portfolio-item/modisys-power/. Accessed 13 Apr 2017

  52. HE Energy GmbH. Homepage [Online]. Available: http://www.he-energy.gmbh. Accessed on 17 May 2017

  53. Bdour M, Al-Addous M, Nelles M, Ortwein A (2016) Determination of optimized parameters for the flexible operation of a biomass-fueled, microscale externally fired gas turbine (EFGT). Energies 9(10):856

    Article  Google Scholar 

  54. Al-attab KA, Zainal ZA (2015) Externally fired gas turbine technology: a review. Appl Energy 138:474–487

    Article  Google Scholar 

  55. Berry M. Modular solid biofuel fired CHP generators for alternative energy solutions. In: 9th international conference, Banská Bystrica, 13 Oct 2010

    Google Scholar 

  56. Schmid M (2009) Entwicklung einer inversen Gasturbine “Aactor” zur Nutzung erneuerbarer Energie und industrieller Abwärme: Phase 2. Ökozentrum Langenbruck, Langenbruck

    Google Scholar 

  57. Tocci L, Pal T, Pesmazoglou I, Franchetti B (2017) Small scale organic rankine cycle (ORC): a techno-economic review. Energies 10(4):413

    Article  Google Scholar 

  58. Qiu G, Liu H, Riffat S (2011) Expanders for micro-CHP systems with organic rankine cycle. Appl Therm Eng 31(16):3301–3307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Büchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Büchner, D., Ortwein, A., Höftberger, E., Lenz, V. (2019). Biomass Energy Small-Scale Combined Heat and Power Systems. In: Kaltschmitt, M. (eds) Energy from Organic Materials (Biomass). Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7813-7_249

Download citation

Publish with us

Policies and ethics