Skip to main content

Biomass as Renewable Source of Energy: Possible Conversion Routes

  • Reference work entry
  • First Online:
Energy from Organic Materials (Biomass)
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC 2017

Glossary

Biochemical conversion:

Conversion of biomass based on biological processes into energy carriers and/or energy.

Bioenergy:

Bioenergy is defined as energy from biomass.

Biofuel:

Biofuel is a fuel produced directly or indirectly from biomass.

Biomass:

From a scientific and technical point of view, biomass is defined as material of biological origin excluding material embedded in geological formations and/or transformed to fossil.

Conversion route:

A conversion route is defined as the overall processes of production, provision, handling, and processing biomass to the point of delivery of the useful energy.

Physicochemical conversion:

Conversion of biomass based on physical and/or chemical processes into energy carriers and/or energy.

Thermochemical conversion:

Heat-induced conversion of biofuels into energy carriers and/or energy.

Definition of the Subject

Biomass, a renewable source of energy, has been used since the beginning of human culture. Until the introduction of coal,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Kaltschmitt M, Hartmann H, Hofbauer H (eds) (2016) Energie aus Biomasse, 3rd edn. Berlin, Springer. (in German)

    Google Scholar 

  2. Kaltschmitt M (2016/2017) Lessons at Hamburg University of Technology. Winterterm

    Google Scholar 

Books and Reviews

  • Abatzoglou N (1998) Biomass gasifier tars: their nature, formation, and conversion. NREL/TP-570-25357 report, golden, Colorado

    Google Scholar 

  • Aivasidis A, Diamantis VI (2005) Biochemical reaction engineering and process development; in: anaerobic wastewater treatment. Adv Biochem Eng Biotechnol 92:49–76

    Google Scholar 

  • Allen MR, Braithwaite A, Hills CC (1997) Trace organic compounds in landfill gas at seven U.K. waste disposal sites. Environ Sci Technol 31:S1054–S1061

    Article  Google Scholar 

  • Amen-Chen C, Riedl B, Wang XM, Roy C (2002a) Softwood bark pyrolysis oil-PF resols – part 1. Resin synthesis and OSB mechanical properties. Holzforschung 56:167

    Google Scholar 

  • Amen-Chen C, Riedl B, Wang XM, Roy C (2002b) Softwood bark pyrolysis oil-PF resols – part 3. Use of propylene carbonate as resin cure accelerator. Holzforschung 56:281

    Google Scholar 

  • Andersson G (1995) Transport of forest energy wood in Sweden. In: Hudson B, Kofman D (eds) Harvesting, storage and road transportation of logging residues. Proceedings of a workshop of IEA-BA-Task XII, Glasgow, Scotland, pp 17–21

    Google Scholar 

  • Antal MJJ, Varhegyi G (1995) Cellulose pyrolysis kinetics: the current state of knowledge. Ind Eng Chem Res 34:703–717

    Article  Google Scholar 

  • Antal MJ, Allen SG, Dai X, Shimizu B, Tam MS, Gronli M (2000) Attainment of the theoretical yield of carbon from biomass. Ind Eng Chem Res 39:4024

    Article  Google Scholar 

  • Antal MJ, Mochidzuki K, Paredes LS (2003) Flash carbonisation of biomass. Ind Eng Chem Res 42:3690–3699

    Article  Google Scholar 

  • Baadsgaard-Jensen J (1988) Storage and energy economy of chunk and chip piles. Report No. 2, EU-Project: exploitation of marginal forest resources for fuel (CEC Nr. EN-3B-069-DK). Danish Institute of Forest Technology (ed), Frederiksberg

    Google Scholar 

  • Ballesteros I, Negro J, Oliva JM, Cabañas A, Manzanares P, Ballesteros M (2006) Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol 129–132:496–508

    Article  Google Scholar 

  • Baltensperger U (1997) Analysis of aerosol. Chimia 51(10):686–689

    Google Scholar 

  • Baxter L (2005) Biomass-coal co-combustion: opportunity for affordable renewable en-ergy. Fuel 84(10):1295–1302

    Article  Google Scholar 

  • Baxter LL, Jenkins BM, Miles TR et al (1994) Alkalis in alternative biofuels. FACT, vol 18, combustion Modeling, scaling and air toxins, ASME

    Google Scholar 

  • Bemtgen JM, Hein KRG, Minchener A (1998) Combined combustion of biomass/sewage sludge and coals. Volume II: Final Reports, APAS Clean Coal Technology Programme, EC, Brüssel

    Google Scholar 

  • Bergman PCA, Boersma AR, Kiel JHA, Prins MJ, Ptasinski KJ, Janssen FGGJ (2005) Torrefied biomass for entrained-flow gasification of biomass. Report ECN-C-05-026, ECN, Petten

    Google Scholar 

  • Berndes GM, Hoogwijk M, van den Broek R (2003) The contribution of biomass in the future global energy system: a review of 17 studies. Biomass Bioenergy 25(1):1–28

    Article  Google Scholar 

  • Bolhar-Nordenkampf M, Kaiser S, Pröll T, Hofbauer H (2008) Operating experiences from two new biomass fired FBC plants. In: 9th international conference on circulating fluidized beds, Hamburg, Mai

    Google Scholar 

  • Bridgwater T (2006) Biomass for energy. J Sci Food Agric 86:1755

    Article  Google Scholar 

  • Brouwers J (1996) Rotational particle separator: a new method for separating fine particles and mists from gases. Chem Eng Technol 19:1–10

    Article  Google Scholar 

  • Brunner T (2006) Aerosol and coarse fly ashes in fixed-bed biomass combustion. Dissertation an der Eindhoven University of Technology (Faculty of Mechanical Engineering), The Netherlands, Eigenverlag T. Brunner

    Google Scholar 

  • Caballero MA, Corella J, Aznar MP, Gil J (2000) Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts. Ind Eng Chem Res 39:1143–1154

    Article  Google Scholar 

  • Cheng WH, Kung HH (1994) Methanol production and use. Marcel Decker, New York

    Google Scholar 

  • Christensen KA (1995) The formation of submicron particles from the combustion of straw. Ph.D. Thesis, Department of Chemical Engineering, Technical University of Denmark, Lyngby

    Google Scholar 

  • Cralle HT, Vietor DM (1989) Solar energy and biomass. In: Kitani O, Hall CW (eds) Biomass handbook. Gordon and Breach Saina, New York

    Google Scholar 

  • Cuchet E, Roux P, Spinelli R (2004) Performance of a logging residue bundler in the temperate forests of France. Biomass Bioenergy 27:31–39

    Article  Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590

    Article  Google Scholar 

  • Daugbjerg Jensen P, Hartmann H, Böhm T, Temmerman M, Rabier F (2006) Morsing M (2006) moisture content determination in solid biofuels by dielectric and NIR reflection methods. Biomass Bioenergy 30:935–943

    Article  Google Scholar 

  • Deurwarder EP, Boeringter H, Mozaffarian H, Rabou LPLM, van der Drift P (2005) Methanation of milena product gas for production of BioSNG. In: 14th European biomass conference, Paris

    Google Scholar 

  • Devi L (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24:125–140

    Google Scholar 

  • DiBlasi C (2008) Modelling gasification/combustion of wood and char particles, ThermalNet deliverable 2 F-2

    Google Scholar 

  • DiBlasi C, Galgano A (2009) Literature review about fundamental aspects of thermal and chemical conversion of biomass. ThermalNet Endbericht, WP2F: science and modelling

    Google Scholar 

  • Dry ME (2002) The Fischer-Tropsch process: 1950-2000. Catal Today 71(3–4):227–241

    Article  Google Scholar 

  • Edgerton S et al (1986) Source emission characterization of residential wood-burning stoves and fireplaces. Environ Sci Technol 20:803–807

    Article  Google Scholar 

  • Emilsson S (2006) International handbook – from extraction of forest fuels to ash recycling. Swedish Forest Agency, Stockholm

    Google Scholar 

  • Emrich W (1978) Handbook of charcoal making – the traditional and industrial methods; solar energy R & D in the European Community, series E, Energy from biomass, vol 7. D. Reidel Publishing Company, Dordrecht/Boston/Lancaster

    Google Scholar 

  • Fernando R (2007) Cofiring of coal with waste fuels, CCC/126. IEA Clean Coal Centre, London

    Google Scholar 

  • Gates D (1965) Energy, plants and ecology. Ecology 46:1–14

    Article  Google Scholar 

  • Gerpen J van (2004) Biodiesel management for biodiesel producers. NREL/SR-510-36242, National Renewable Energy Laboratory

    Google Scholar 

  • Gil J, Corella J, Aznar MP, Caballero MA (1999) Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent an the product distribution. Biomass Bioenergy 16:1–15

    Article  Google Scholar 

  • Gustafsson G (1981) Artificial drying of wood chips for energy purposes. In: Fazzolare RA, Smith CB (eds) Beyond the energy crisis – opportunity and challenge. Third international conference on energy use management, Berlin, pp A151–A171

    Google Scholar 

  • Hamelinck CN, Faaij A (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111:1–22

    Article  Google Scholar 

  • Hamelinck CN (2004) Outlook for advanced biofuels. Universität Utrecht, Dissertation

    Google Scholar 

  • Hartmann H, Höldrich A (2007) Bereitstellung von Festbrennstoffen. In: Hartmann H (ed) Handbuch Bioenergie-Kleinanlagen (2. vollst. überarbeitete Auflage). Sonderpublikation des Bundesministeriums für Verbraucherschutz, Ernährung und Landwirtschaft (BMVEL) und der Fachagentur Nachwachsende Rohstoffe (FNR), Gülzow, pp 18–55

    Google Scholar 

  • Hartmann H, Thuneke K (1997) Ernteverfahren für Kurzumtriebsplantagen – Maschinenerprobung und Modellbetrachtungen. Landtechnik Bericht, Heft 29, Selbstverlag Landtechnik Weihenstephan (ed), Freising

    Google Scholar 

  • Hartmann H, Böhm T, Daugbjerg Jensen P, Temmerman M, Rabier F, Jirjis R, Hersener J-L, Rathbauer J (2004) Methods for bulk density determination of solid bio-fuels. In: van Swaaij WPM, Fjällström T, Helm P, Grassi a (eds) 2nd world conference and technology Exhibition on biomass for energy, industry and climate protection, Rome, 10–14 May 2004, pp 662–665

    Google Scholar 

  • Hartmann H, Roßmann P, Link H, Marks A, Müller R, Amann E (2004) Secondary flue gas condensation for domestic wood chip boilers. In: van Swaaij WPM, Fjällström T, Helm P, Grassi a (eds) 2nd world conference and technology Exhibition on biomass for energy, industry and climate protection, Rome, 10–14 May 2004, pp 1334–1337

    Google Scholar 

  • Hartmann H, Turowski P, Roßmann P, Ellner-Schuberth F, Hopf N (2007) Grain and straw combustion in domestic furnaces – influences of fuel types and fuel pretreatment. In: Maniatis K, Grimm H-P, Helm P, Grassi A (eds) Proceedings 15th European Biomass Conference & Exhibition, 7–11 May 2007, Berlin, Germany, ETA Renewable Energies, Florence, Italy, pp 1564–1569

    Google Scholar 

  • Hasler P, Nusbaumer T, Bürli J (2001) Herstellung von Holzpellets – Einfluss von Presshilfsmitteln auf Produktion, Qualität, Lagerung, Verbrennung sowie Energie- und Ökobilanz von Holzpellets. Schweizerisches Bundesamt für Energie (ed), Bern, Eigenverlag

    Google Scholar 

  • Houck JE (1993) Atmospheric emissions of carbon dioxide, carbon monoxide, methane, non-methane hydrocarbons, and sub-micron elemental carbon particles from residential wood combustion. Air ampersand waste management association; 86th annual meeting ampersand exhibition, Pittsburgh, pp 245–246

    Google Scholar 

  • Hüglin C (1996) New applications of aerosol photoemission: characterisation of wood combustion particles and time resolved thermal desorption studies. Dissertation ETH Zürich

    Google Scholar 

  • Jacques K, Lyons TP, Kelsall DR (eds) (1999) The alcohol textbook, 3rd edn. Nottingham, Nottingham University Press

    Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134

    Article  Google Scholar 

  • Kinast JA (2003) Production of biodiesels from multiple feedstocks and properties of biodiesels and biodiesel/diesel blends. Final report, report 1 in a series of 6, gas technology institute. National Renewable Energy Laboratory, NREL/SR-510-31460

    Google Scholar 

  • Knoef H (2005) Handbook of biomass gasification. BTS Biomass Technology, Enschede

    Google Scholar 

  • Knothe G, Krahl J, van Gerpen J (Hrsg.) (2005) The biodiesel handbook. AOCS Press, Urbana

    Google Scholar 

  • Kujawski W, Zielinski L (2006) Bioethanol – one of the renewable energy sources. Environ Prot Eng 32(1):143–149

    Google Scholar 

  • Laitila J, Asikainen A, Liiri H (2006) Cost calculators for the procurement of small sized thinning wood, delimbed energy wood and stumps for energy. In: Proceedings World Bioenergy 2006, Jönköping, Sweden, Swedish Bioenergy Association, pp 326–330

    Google Scholar 

  • Ledin S, Willebrand E (eds) (1996) Handbook on how to grow short rotation forests, 2nd edn. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  Google Scholar 

  • Lee D, Owens VN, Boe A, Jeranyama P (2007) Composition of herbaceous biomass feedstocks. North central sun Grant Center (Hrsg.), South Dakota State University, Brookings, Selbstverlag

    Google Scholar 

  • McCrillis RC, Randall RW, Warren SH (1992) Effects of operating variables on PAH emissions and mutagenicity of emissions from woodstoves. J Air Waste Manage Assoc 42:691–694

    Article  Google Scholar 

  • Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials – a review. Bioresour Technol 68:71

    Article  Google Scholar 

  • Mitchell CP (1997) Development of harvesting and storage technologies essential for the establishment of short rotation forestry as an economic source of fuel in Europe. Final technical report for the European Comission (AAIR3), Project No. CT 941102. Aberdeen University (ed), UK, Selbstverlag

    Google Scholar 

  • Mitchell CP (1997) Development of harvesting and storage technologies essential for the establishment of short rotation forestry as an economic source of fuel in Europe. Technical report for the European Commission (AAIR3), Project No. CT 941102. Aberdeen University, Aberdeen

    Google Scholar 

  • Oasmaa A, Czernik S (1999) Fuel oil quality of biomass pyrolysis oils. In: Overend RP, Chornet E (eds) Biomass – a growth opportunity in green energy and value-added products, Proceedings of the 4th biomass conference of the Americas. Pergamon Elsevier, Oxford, pp 1247–1252

    Google Scholar 

  • Ogawa T, Inoue N, Shikada T, Ohno Y (2003) Direct dimethyl ether synthesis. J Nat Gas Chem 12:219–227

    Google Scholar 

  • Pröll T, Bolhàr-Nordenkampf M, Strauss T, Hofbauer H (2006) Description of local heat release in an industrial scale bubbling bed waste incinerator. In: Proceedings of the 19th international conference on fluidized bed combustion, Vienna, 23–25 May 2006

    Google Scholar 

  • Prins MJ (2005) Thermodynamic analysis of biomass gasification and torrefaction. Dissertation, Technische Universität Eindhoven

    Google Scholar 

  • Rehm HJ, Reed G (eds) (1996) Biotechnology. Weinheim, VCH

    Google Scholar 

  • Ribbing C (2007) Environmentally friendly use of non-coal ashes in Sweden. Waste Manag 27:1428–1435

    Article  Google Scholar 

  • Samuelsson R, Burvall J, Jirjis R (2006) Comparison of different methods for the determination of moisture content in biomass. Biomass Bioenergy 30:929–934

    Article  Google Scholar 

  • Sander B (2004) Full scale experience on co-firing of straw. In: 2nd world biomass conference, workshop 4: co-firing, Rome

    Google Scholar 

  • Schneider C, Hartmann H (2006) Maize as energy crop for combustion. Agricultural optimisation of fuel supply. Berichte aus dem TFZ, Nr. 9. Straubing: Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe; Download unter: www.tfz.bayern.de

  • Smeets E, Faaij A, Lewandowski I, Turkenburg T (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33:56–106

    Article  Google Scholar 

  • Stevens DJ (2001) Hot gas conditioning: recent progress with large-scale biomass gasification systems, update and summary of recent progress, National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Strauss K (1998) Kraftwerkstechnik zur Nutzung fossiler, regenerativer und nuklearer Energiequellen. Springer, Berlin, p 4, Auflage

    Google Scholar 

  • Strauss T, Pröll T, Hofbauer H (2006) Start up and operation optimization of a 39 MWth bubbling fluidized bed incinerator for domestic waste and sewage sludge. In: Proceedings of the 19th international conference on fluidized bed combustion, 23–25 May 2006, Vienna

    Google Scholar 

  • Stucki S, Biollaz S, Schildhauer T, Vogel F (2007) New approaches to SNG production from biomass. In: Energy Delta conference 2007, green gas session Groningen, 20–21 Nov 2007

    Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  • TEKES: Stumps – an unutilised reserve. Wood energy technology programme – Newsletter on Results 4/2004. TEKES, Helsinki

    Google Scholar 

  • Thörnqvist T (1988) Wood fuel storage in large piles – mechanisms and risks of self-ignition. In: Danielsson BO, Gislerud O (eds) Production, storage and utilization of wood fuels. Proceedings of IEA/BE conference, task III/activity 6 and 7, Uppsala, pp 193–197

    Google Scholar 

  • Thrän D et al (2006) Sustainable strategies for biomass use in the european context. Analysis in the charged debate on national guidelines and the competition between solid, liquid and gaseous biofuels. IE-report 1/2006, Leipzig

    Google Scholar 

  • Travis C et al (1985) Health risks of residential wood heat. Environ Manag 9(3):209–216

    Article  Google Scholar 

  • Wayman M, Parekh SR (1990) Biotechnology of biomass conversion. Open University Press, Milton Keynes

    Google Scholar 

  • Wieck-Hansen K, Sander B (2003) 10 years experience with co-firing straw and coal as main fuels with different types of biomasses in a CFB boiler in Grena, Denmark. VGB PowerTech 83(10):64–67

    Google Scholar 

  • Wingelhofer F (2007) Directly wood particle fired gas turbine plants: concept, experimental results and potential applications for combined heat and power generation with moderate output. In: 15th European biomass conference and Exhibition, Berlin, 7–11 May 2007

    Google Scholar 

  • Wischnewski R, Werther J, Heidenhof N (2006) Synergy effects of the co-combustion of biomass and sewage sludge with coal in the CFB combustor of Stadtwerke Duisburg AG. VGB PowerTech 12:63–70

    Google Scholar 

  • Worley JW, Cundiff JS (1991) System analysis of sweet sorghum harvest for ethanol production in the piedmont. Trans ASAE 34(2):539–547

    Article  Google Scholar 

  • Wyman C (ed) (1996) Handbook on bioethanol. Taylor and Francis, Washington, DC

    Google Scholar 

  • Zheng Y, Jensen PA et al (2007) Ash transformation during co-firing coal and straw. Fuel 86(7–8):1008–1020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kaltschmitt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaltschmitt, M. (2019). Biomass as Renewable Source of Energy: Possible Conversion Routes. In: Kaltschmitt, M. (eds) Energy from Organic Materials (Biomass). Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7813-7_244

Download citation

Publish with us

Policies and ethics