Skip to main content

Emissions from Solid Biofuel Combustion: Pollutant Formation and Control Options

  • Reference work entry
  • First Online:
Energy from Organic Materials (Biomass)
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC 2017

Glossary

Biomass:

The biodegradable part of products, wastes, and residues of agriculture of biological origin (including animal and vegetable matter), forestry, and associated industries, including fisheries and aquaculture.

Combustion:

During the thermochemical conversion of the complete combustion the chemical structure of biomass is destroyed by heat application and converted via intermediate steps to the main products carbon dioxide and water.

Main elements:

Includes the elements with the highest amounts in biomass: C, H, O, N, and S. Typically, in case of combustion, the main products during the oxidation reaction are CO2, H2O, NOx, and SOx.

Minor elements:

Includes the inorganic ash- and particulate matter-forming elements Ca, Mg, K, Na, Mn, P, Si, Al, Fe, and Cl in biomass.

Particulate matter:

Complex mixture of extremely small particles (~ nm range) and liquid droplets that get with the exhaust gas of a combustion unit into the air. These small particles consist mainly of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Demirbas A (2009) Biorefineries: current activities and future developments. Energy Convers Manag 50:2782–2801

    Article  Google Scholar 

  2. Döring S (2011) Pellets als Energieträger: Technologie und Anwendung. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  3. Gopal AR, Farrell AE (2008) Bioenergy research needs for heat, electricity, and liquid fuels. MRS Bullet 33:373–380

    Article  Google Scholar 

  4. Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermochemical conversion of biomass. Energy Convers Manag 51:969–982

    Article  Google Scholar 

  5. Kaltschmitt M, Hartmann H, Hofbauer H (2016) Energie aus Biomasse: Grundlagen, Techniken und Verfahren, 3., aktualisierte Auflage. Springer, Berlin/Heidelberg

    Google Scholar 

  6. Schmitt VEM, Kaltschmitt M (2012) Pelletizing of wheat straw – how to influence mechanical–physical properties. Biofuels 3:35–46

    Article  Google Scholar 

  7. Fouilland T, Grace JR, Ellis N (2010) Recent advances in fluidized bed technology in biomass processes. Biofuels 1:409–433

    Article  Google Scholar 

  8. Steenari BM, Lundberg A, Pettersson H, Wilewska-Bien AD (2009) Investigation of ash sintering during combustion of agricultural residues and the effect of additives. Energy Fuel 23:5655–5662

    Article  Google Scholar 

  9. Steenari BM, Lindqvist O (1998) High-temperature reactions of straw ash and the anti-sintering additives kaolin and dolomite. Biomass Bioenergy 14:67–76

    Article  Google Scholar 

  10. Gilbe C, Öhman M, Lindström E, Boström D, Backman R, Samuelsson R, Burvall J (2008) Slagging characteristics during residential combustion of biomass pellets. Energy and Fuels 22:3536–3543

    Article  Google Scholar 

  11. Lindström E, Sandström M, Boström D, Öhman M (2007) Slagging characteristics during combustion of cereal grains rich in phosphorus. Energy Fuel 21:710–717

    Article  Google Scholar 

  12. Arvelakis S, Gehrmann H, Beckman M, Koukios EG (2002) Effect of leaching on the ash behavior of olive residue during fluidized bed gasification. Biomass Bioenergy 22:55–69

    Article  Google Scholar 

  13. Arvelakis S, Koukios EG (2002) Physicochemical upgrading of agroresidues as feedstocks for energy production via thermochemical conversion methods. Biomass Bioenergy 22:331–348

    Article  Google Scholar 

  14. Fagerström J, Steinvall E, Boström D, Boman C (2016) Alkali transformation during single pellet combustion of soft wood and wheat straw. Fuel Process Technol 143:204–212

    Article  Google Scholar 

  15. Selvakumaran P, Lawerence A, Bakthavatsalam AK (2014) Effect of additives on sintering of lignites during CFB combustion. Appl Therm Eng 67:480–488

    Article  Google Scholar 

  16. Shoulaifar KT, DeMartini N, Zevenhoven M, Verhoeff F, Kiel J, Hupa M (2013) Ash-forming matter in Torrefied birch wood: changes in chemical association. Energy Fuel 27:5684–5690

    Article  Google Scholar 

  17. van Lith SC, Jensen PA, Frandsen FJ, Glarborg P (2008) Release to the gas phase of inorganic elements during wood combustion. Part 2: influence of fuel composition. Energy Fuel 22:1598–1609

    Article  Google Scholar 

  18. Höfer I, Kaltschmitt M (2017) Effect of additives on particulate matter formation of solid biofuel blends from wood and straw. Biomass Conv Bioref 7:101–116

    Article  Google Scholar 

  19. Nultsch W (1982) Angewandte Botanik. Thieme, Stuttgart

    Google Scholar 

  20. American Society for Testing and Materials (2008) Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal; ASTM Standard D5373–08, West Conshohocken, PA, Annual Book of ASTM Standards

    Google Scholar 

  21. Schmitt VEM (2013) Dissertation am Institut für Umwelttechnik und Energiewirtschaft. Technische Universität, Hamburg-Harburg

    Google Scholar 

  22. Zeldovich J (1946) The oxidation of nitrogen in combustion and explosions. Acta Physicochim URSS 21:577–628

    Google Scholar 

  23. Keller R (1994) Primärmaßnahmen zur NOx-Minderung bei der Holzverbrennung mit dem Schwerpunkt der Luftstufung. Dissertation, ETH Zürich

    Google Scholar 

  24. Good J, Nussbaumer T, Bühler R, Jenni A (1996) Erfolgskontrolle SNCR-Verfahren zur Entstickung von Holzfeuerungen. Bundesamt für Energiewirtschaft, Bern

    Google Scholar 

  25. Knudsen JN, Jensen PA, Lin W, Dam-Johansen K (2005) Secondary capture of chlorine and sulfur during thermal conversion of biomass. Energy Fuel 19:606–617

    Article  Google Scholar 

  26. Lang T, Jensen PA, Knudsen JN (2006) The effects of ca-based sorbents on sulfur retention in bottom ash from grate-fired annual biomass. Energy Fuel 20:796–806

    Article  Google Scholar 

  27. Nussbaumer T (1997) Verbrennung und Vergasung von Energiegras und Feldholz. Bundesamt für Energiewirtschaft, Bern

    Google Scholar 

  28. Kaufmann H (1997) Chlorine compounds in emissions and residues from the combustion of herbaceous biomass. Dissertation, ETH Zürich

    Google Scholar 

  29. Weber R, Moxter W, Pilz M, Pospischil H, Roleder G (1995) Untersuchungen zum Einfluß der biogenen Brennstoffe und -qualität sowie der Fahrweise der Anlage auf die gasund partikelförmigen Emissionen des Strohheizwerkes Schkölen. Thüringer Landesanstalt für Umwelt, Jena

    Google Scholar 

  30. Porbatzki D, Stemmler M, Müller M (2011) Release of inorganic trace elements during gasification of wood, straw, and miscanthus. Biomass Bioenergy 35:79–86

    Article  Google Scholar 

  31. Zevenhoven M, Yrjas P, Skrifvars BJ, Hupa M (2012) Characterization of ash-forming matter in various solid fuels by selective leaching and its implications for fluidized-bed combustion. Energy Fuel 26:6366–6386

    Article  Google Scholar 

  32. Wang L, Skjevrak G, Hustad JE, Grønli MG (2011) Effects of sewage sludge and marble sludge addition on slag characteristics during wood waste pellets combustion. Energy Fuel 25:5775–5785

    Article  Google Scholar 

  33. Aho M (2001) Reduction of chlorine deposition in FB boilers with aluminium-containing additives. Fuel 80:1943–1951

    Article  Google Scholar 

  34. Iisa K, Lu Y, Salmenoja K (1999) Sulfation of potassium chloride at combustion conditions. Energy Fuel 13:1184–1190

    Article  Google Scholar 

  35. Jiménez S, Ballester J (2005) Influence of operating conditions and the role of sulfur in the formation of aerosols from biomass combustion. Combust Flame 140:346–358

    Article  Google Scholar 

  36. Jiménez S, Ballester J (2007) Formation of alkali sulphate aerosols in biomass combustion. Fuel 86:498

    Article  Google Scholar 

  37. Llorente MJF, Arocas PD, Nebot LG, García JEC (2008) The effect of the addition of chemical materials on the sintering of biomass ash. Fuel 87:2651–2658

    Article  Google Scholar 

  38. Öhman M, Nordin A (2000) The role of kaolin in prevention of bed Agglomerisation. Energy Fuel 14:618–624

    Article  Google Scholar 

  39. Pettersson A, Amand LE, Steenari BM (2009) Chemical fractionation for the characterisation of fly ashes from cocombustion of biofuels using different methods for alkali reduction. Fuel 88:1758–1772

    Article  Google Scholar 

  40. Tobiasen L, Skytte R, Pedersen LS, Pedersen ST, Lindberg MA (2007) Deposit characteristic after injection of additives to a Danish straw-fired suspension boiler. Fuel Process Technol 88:1108–1117

    Article  Google Scholar 

  41. Tran KQ, Iisa K, Steenari BM, Lindqvist O (2003) A kinetic study of gaseous alkali capture by kaolin in the fixed bed reactor equipped with an alkali detector. Fuel 84:169–175

    Article  Google Scholar 

  42. Xiong S, Burvall J, Orberg H, Kalen G, Thyrel M, Öhman M, Bostrom D (2008) Slagging characteristics during combustion of corn stovers with and without kaolin and calcite. Energy and Fuels 22:3465–3470

    Article  Google Scholar 

  43. Vassilev SV, Baxter D, Andersen L, Vassileva C, Morgan T (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33

    Article  Google Scholar 

  44. Vassilev SV, Baxter D, Andersen L, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933

    Article  Google Scholar 

  45. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105:40–76

    Article  Google Scholar 

  46. Vassilev SV, Baxter D, Vassileva CG (2013) An overview of the behaviour of biomass during combustion: part I. Phase-mineral transformations of organic and inorganic matter. Fuel 112:391–449

    Article  Google Scholar 

  47. Werkelin J, Skrifvars BJ, Zevenhoven M, Holmbom B, Hupa M (2010) Chemical forms of ash-forming elements in woody biomass fuels. Fuel 89:481–493

    Article  Google Scholar 

  48. Wang L, Skjevrak G, Hustad JE, Skreiberg Ø (2014) Investigation of biomass ash sintering characteristics and the effect of additives. Energy Fuel 28:208–218

    Article  Google Scholar 

  49. Schmitt VEM, Kaltschmitt M (2013) Effect of straw proportion and ca- and al-containing additives on ash composition and sintering of wood–straw pellets. Fuel 109:551–558

    Article  Google Scholar 

  50. Höfer I, Kaltschmitt M (2016) Assessment of additives avoiding the release of problematic species into the gas phase during biomass combustion—development of a fast screening method based on TGA. Biomass Conv Bioref 53:235

    Google Scholar 

  51. Boman C, Nordin A, Boström D, Öhman M (2004) Characterization of inorganic particulate matter from residential combustion of pelletized biomass fuels. Energy Fuel 18:338–348

    Article  Google Scholar 

  52. Wu H, Pedersen MN, Jespersen JB, Aho M, Roppo J, Frandsen FJ, Glarborg P (2014) Modeling the use of sulfate additives for potassium chloride destruction in biomass combustion. Energy Fuel 28:199–207

    Article  Google Scholar 

  53. Threfall T (2003) Structural and thermodynamic explanations of Ostwald’s rule. Org Process Res Dev 7:1017–1027

    Article  Google Scholar 

  54. Ostwald W (1897) Über die Bildung und Umwandlung fester Körper, 1. Abhandlung: Übersättigung und Überkaltung. Z Phys Chem 22:289–330

    Google Scholar 

  55. Boström M, Kassman H, Helgesson A, Berg M, Andersson C, Backman R, Nordin A (2007) Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler. Fuel Process Technol 88:1171–1177

    Article  Google Scholar 

  56. Boström D, Skoglund N, Grimm A, Boman C, Öhman M, Broström M, Backman R (2012) Ash transformation chemistry during combustion of biomass. Energy Fuel 26:85–93

    Article  Google Scholar 

  57. Paneru M, Babat S, Maier J, Scheffknecht G (2016) Role of potassium in deposit formation during wood pellets combustion. Fuel Process Technol 141:266–275

    Article  Google Scholar 

  58. Jöller M, Brunner T, Obernberger I (2005) Modeling of aerosol formation during biomass combustion in grate furnaces and comparison with measurements. Energy Fuel 19:311–323

    Article  Google Scholar 

  59. Wiinikka H, Grönberg C, Öhrman O, Boström D (2009) Influence of TiO2 additive on vaporization of potassium during straw combustion. Energy Fuel 23:5367–5374

    Article  Google Scholar 

  60. Wang L, Skjevrak G, Hustad JE, Grønli M, Skreiberg Ø (2012) Effects of additives on barley straw and husk ashes sintering characteristics. Energy Procedia 20:30–39

    Article  Google Scholar 

  61. Aho M, Vainikka P, Taipale R, Yrjas P (2008) Effective new chemicals to prevent corrosion due to chlorine in power plant superheaters. Fuel 87:647–654

    Article  Google Scholar 

  62. Boman C, Boström D, Öhman M. Effect of fuel additive sorbents (kaolin and calcite) on aerosol particle emission and characteristics during combustion of pelletized woody biomass. 2–6 June 2008, Valencia, Spain. 16th European Biomass Conference & Exhibition, pp 1514–1517

    Google Scholar 

  63. Khalil RA, Todorovic D, Skreiberg O, Becidan M, Backman R, Goile F, Skreiberg A, Sørum L (2012) The effect of kaolin on the combustion of demolition wood under well-controlled conditions. Waste Manag Res 30:672–680

    Article  Google Scholar 

  64. Mroczek K, Kalisz S, Pronobis M, Soltys J (2011) The effect of halloysite additive on operation of boilers firing agricultural biomass. Fuel Process Technol 92:845–855

    Article  Google Scholar 

  65. Steenari BM, Karlfeldt Fedje K (2010) Addition of kaolin as potassium sorbent in the combustion of wood fuel – effects on fly ash properties. Fuel 89:2026–2032

    Article  Google Scholar 

  66. Ghaly AE, Ergüdenler A, Laufer E (1993) Agglomeration characteristics of alumina sand-straw ash mixtures at elevated temperatures. Biomass Bioenergy 5:467–480

    Article  Google Scholar 

  67. Thy P, Jenkins BM, Grundvig S, Shiraki R, Lesher CE (2006) High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85:783–795

    Article  Google Scholar 

  68. Grimm A, Skoglund N, Bostrom D, Ohman M (2011) Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels. Energy Fuel 25:937–947

    Article  Google Scholar 

  69. Wu H, Glarborg P, Frandsen FJ, Dam-Johansen K, Jensen PA (2011) Dust-firing of straw and additives: ash chemistry and deposition behavior. Energy Fuel 25:2862–2873

    Article  Google Scholar 

  70. Theis M, Mueller C, Skrifvars BJ, Hupa M, Tran H (2006) Deposition behaviour of model biofuel ash in mixtures with quartz sand. Part 1: experimental data. Fuel 85:1970–1978

    Article  Google Scholar 

  71. Thy P, Jenkins BM, Lesher CE, Grundvig S (2006) Compositional constraints on slag formation and potassium volatilization from rice straw blended wood fuel. Fuel Process Technol 87:383–408

    Article  Google Scholar 

  72. Frandsen FJ (2005) Utilizing biomass and waste for power production - a decade of contributing to the understanding, interpretation and analysis of deposits and corrosion products. Fuel 84:1277–1294

    Article  Google Scholar 

  73. Baxter LL, Miles TR, Jenkins BM, Milne T, Dayton D, Bryers RW, Oden LL (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54:47–78

    Article  Google Scholar 

  74. Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26:1–27

    Article  Google Scholar 

  75. Tissari J, Sippula O, Torvela T, Lamberg H, Leskinen J, Karhunen T, Paukkunen S, Hirvonen M-R, Jokiniemi J (2015) Zinc nanoparticle formation and physicochemical properties in wood combustion – experiments with zinc-doped pellets in a small-scale boiler. Fuel 143:404–413

    Article  Google Scholar 

  76. Elled AL, Åmand LE, Eskilsson D (2008) Fate of zinc during combustion of demolition wood in a fluidized bed boiler. Energy Fuel 22:1519–1526

    Article  Google Scholar 

  77. Enestam S, Mäkelä K, Backman R, Hupa M (2011) Occurrence of zinc and lead in aerosols and deposits in the fluidized-bed combustion of recovered waste wood. Part 2: thermodynamic considerations. Energy Fuel 25:1970–1977

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Höfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Höfer, I., Kaltschmitt, M., Beckendorff, A. (2019). Emissions from Solid Biofuel Combustion: Pollutant Formation and Control Options. In: Kaltschmitt, M. (eds) Energy from Organic Materials (Biomass). Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7813-7_1043

Download citation

Publish with us

Policies and ethics