Skip to main content

Hydrogen Production from Algal Pathways

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

Glossary

Algae:

Diverse and large group of photosynthetic and aquatic organisms ranging from unicellular to multicellular. They have no true stems, roots and leaves.

Autotrophic:

An organism that has a capability to produce energy-containing organic compounds from simple substance, generally by using sunlight as an energy source.

Chemical looping:

Novel technology that can provide the means of converting fuel to heat and provide CO2 separation with high energy efficiency.

Combined cycle:

Combination of two or more thermodynamic cycles that work from the same source of heat and convert it into mechanical energy. Practically, it is a combination of a gas turbine (Brayton cycle) and a steam turbine (Rankine cycle) for power generation.

Exergy:

The maximum available work that can be used through a process that brings the system into equilibrium with the environment. It represents the quality of energy.

Gasification:

Process that converts fossil or organic-based carbonaceous materials into...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Alba LG, Torri C, Samorì C, Jvd S, Fabbri D, Kersten SRA, Brilman DWF (2012) Hydrothermal treatment (HTT) of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuel 26:642–657

    Article  Google Scholar 

  2. Bayramoglu G, Akbulut A, Ozalp VC, Arica MY (2015) Immobilized lipase on micro-porous biosilica for enzymatic transesterification of algal oil. Chem Eng Res Des 95:12–21

    Article  Google Scholar 

  3. Hwang KJ, Wu SE (2015) Disk structure on the performance of a rotating-disk dynamic filter: a case study on microalgae microfiltration. Chem Eng Res Des 94:44–51

    Article  Google Scholar 

  4. Aziz M, Oda T, Kashiwagi T (2013) Enhanced high energy efficient steam drying of algae. Appl Energy 109:163–170

    Article  Google Scholar 

  5. Saeid A, Chojnacka K (2015) Toward production of microalgae in photobioreactors under temperate climate. Chem Eng Res Des 93:377–391

    Article  Google Scholar 

  6. Aziz M, Oda T, Kashiwagi T (2014) Integration of energy-efficient drying in microalgae utilization based on enhanced process integration. Energy 70:307–316

    Article  Google Scholar 

  7. Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1:763–784

    Article  Google Scholar 

  8. Aziz M, Oda T, Kashiwagi T (2014) Advanced energy harvesting from algae—innovative integration of drying, gasification and combined cycle. Energies 7:8217–8235

    Article  Google Scholar 

  9. McGinn PJ, Dickinson KE, Bhatti S, Frigon JC, Guiot SR, O’Leary SJB (2011) Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynth Res 109:231–247

    Article  Google Scholar 

  10. Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sust Energ Rev 23:443–462

    Article  Google Scholar 

  11. Sambusiti C, Bellucci M, Zabaniotou A, Beneduce L, Monlau F (2015) Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review. Renew Sust Energ Rev 44:20–36

    Article  Google Scholar 

  12. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  Google Scholar 

  13. Johansen MN (2013) Microalgae: biotechnology, microbiology and energy. Nova Science, New York

    Google Scholar 

  14. Leal MC, Munro MHG, Blunt JW, Puga J, Jesus B, Calado R, Rosa R, Madeira C (2013) Biogeography and biodiscovery hotspots of macroalgal marine natural products. Nat Prod Rep 30:1380–1390

    Article  Google Scholar 

  15. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  Google Scholar 

  16. Schmidt WE, Gurgel CFD, Fredericq S (2016) Taxonomic transfer of the red algal genus Gloiosaccion to Chrysymenia (Rhodymeniaceae, Rhodymeniales), including the description of a new species, Chrysymenia pseudoventricosa, for the Gulf of Mexico. Phytotaxa 243:54–70

    Article  Google Scholar 

  17. Buschmann AH, Correa JA, Westermeier R, Hernández-González MC, Norambuena R (2001) Red algal farming in Chile: a review. Aquaculture 194:203–220

    Article  Google Scholar 

  18. Barsanti L, Gualtieri P (2014) Algae: anatomy, biochemistry, and biotechnology. CRC, Boca Raton

    Book  Google Scholar 

  19. Kerrison PD, Stanley MS, Edwards MD, Black KD, Hughes AD (2015) The cultivation of European kelp for bioenergy: site and species selection. Biomass Bioenergy 80:229–242

    Article  Google Scholar 

  20. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Article  Google Scholar 

  21. Buck BH, Buchholz CM (2004) The offshore-ring: a new system design for the open ocean aquaculture of macroalgae. J Appl Phycol 16:355–368

    Article  Google Scholar 

  22. Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504

    Article  Google Scholar 

  23. Mohring MB, Wernberg T, Kendrick GA, Rule MJ (2013) Reproductive synchrony in a habitat-forming kelp and its relationship with environmental conditions. Mar Biol 160:119–126

    Article  Google Scholar 

  24. Huesemann MH, Hausmann TS, Bartha R, Aksoy M, Weissman JC, Benemann JR (2009) Biomass productivities in wild type and pigment mutant of Cyclotella sp. (diatom). Appl Biochem Biotechnol 157:507–526

    Article  Google Scholar 

  25. Vitova M, Bisova K, Kawano S, Zachleer V (2016) Accumulation of energy reserves in Algae: from cell cycles to biotechnological applications. Biotechnol Adv 33:1204–1218

    Article  Google Scholar 

  26. Berg JM, Tymoczko JL, Stryer L (2002) Triacylglycerols are highly concentrated energy stress. W. H. Freeman, New York

    Google Scholar 

  27. Bharathiraja B, Chakravarthy M, Kumar RR, Yogendran D, Yuvaraj D, Jayamuthunagai J, Kumar RP, Palani S (2015) Aquatic biomass (algae) as a future feed stock for bio-refineries: a review on cultivation, processing and products. Renew Sust Energ Rev 47:634–653

    Article  Google Scholar 

  28. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  Google Scholar 

  29. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  Google Scholar 

  30. Aziz M, Oda T, Kashiwagi T (2015) Innovative steam drying of empty fruit bunch with high energy efficiency. Dry Technol 33:395–405

    Article  Google Scholar 

  31. Lardon L, Helias A, Sialve B, Stayer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  Google Scholar 

  32. Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    Article  Google Scholar 

  33. Mohamed LA, Kouhila M, Lahsasni S, Jamali A, Idlimam A, Rhazi M, Aghfir M, Mahrouz M (2005) Equilibrium moisture content and heat of sorption of Gelidium sesquipedale. J Stored Prod Res 41:199–209

    Article  Google Scholar 

  34. Aziz M, Fushimi C, Kansha Y, Mochidzuki K, Kaneko S, Tsutsumi A et al (2011) Innovative energy-efficient biomass drying based on self-heat recuperation technology. Chem Eng Technol 34:1095–1103

    Article  Google Scholar 

  35. Liu Y, Aziz M, Kansha Y, Tsutsumi A (2013) A novel exergy recuperative drying module and its application for energy-saving drying with superheated steam. Chem Eng Sci 100:392–401

    Article  Google Scholar 

  36. Devahastin S, Mujumdar AS (2007) Indirect dryers. In: Mujumdar AS (ed) Handbook of industrial engineering. CRC Press, Boca Raton, pp 137–149

    Google Scholar 

  37. Ruiz JA, Juárez MC, Morales MP, Muñoz P, Mendívil MA (2013) Biomass gasification for electricity generation: Review of current technology barriers. Renew Sust Energ Rev 18:174–183

    Article  Google Scholar 

  38. Ahmed I, Gupta AK (2009) Syngas yield during pyrolysis and steam gasification of paper. Appl Energy 86:1813–1821

    Article  Google Scholar 

  39. Antonini T, Gallucci K, Anzoletti V, Stendardo S, Foscolo PU (2015) Oxygen transport by ionic membranes: correlation of permeation data and prediction of char burning in a membrane-assisted biomass gasification process. Chem Eng Process 94:39–52

    Article  Google Scholar 

  40. Udomsirichakorn J, Salam PA (2014) Review of hydrogen-enriched gas production from steam gasification of biomass: the prospect of CaO-based chemical looping gasification. Renew Sust Energ Rev 30:565–579

    Article  Google Scholar 

  41. Basu P (2010) Biomass characteristics, biomass gasification and pyrolysis. Elsevier, Amsterdam

    Google Scholar 

  42. Parthasarathy P, Narayanan KS (2014) Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield – a review. Renew Energy 66:570–579

    Article  Google Scholar 

  43. Duman G, Uddin MA, Yanik J (2014) Hydrogen production from algal biomass via steam gasification. Bioresour Technol 166:24–30

    Article  Google Scholar 

  44. López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2014) Comparison of the steam gasification performance of three species of microalgae by thermogravimetric-mass spectrometric analysis. Fuel 134:1–10

    Article  Google Scholar 

  45. Díaz-Rey MR, Cortés-Reyes M, Herrera C, Larrubia MA, Amadeo N, Laborde M, Alemany LJ (2014) Hydrogen-rich gas production from algae-biomass by low temperature catalytic gasification. Catal Today 257:177–184

    Article  Google Scholar 

  46. Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  Google Scholar 

  47. Aziz M (2016) Power generation from algae employing enhanced process integration technology. Chem Eng Res Des 109:297–306

    Article  Google Scholar 

  48. Yan F, Zhang L, Hu Z, Cheng G, Jiang C, Zhang Y, Xu T, He P, Luo S, Xiao B (2010) Hydrogen-rich gas production by steam gasification of char derived from cyanobacterial blooms (CDCB) in a fixed-bed reactor: influence of particle size and residence time on gas yield and syngas composition. Int J Hydrog Energy 35:10212–10217

    Article  Google Scholar 

  49. Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A (2016) Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation. Renew Sust Energ Rev 53:1333–1347

    Article  Google Scholar 

  50. Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15:704–714

    Article  Google Scholar 

  51. Zaini IN, Novianti S, Nurdiawati A, Irhamna AR, Aziz M, Yoshikawa K (2017) Investigation of the physical characteristics of washed hydrochar pellets made from empty fruit bunch. Fuel Process Technol 160:109–120

    Article  Google Scholar 

  52. Alghurabie IK, Hasan BO, Jackson B, Kosminski A, Ashman PJ (2013) Fluidized bed gasification of Kingston coal and marine microalgae in a spouted bed reactor. Chem Eng Res Des 91:1614–1624

    Article  Google Scholar 

  53. Zhu Y, Piotrowska P, Van Eyk PJ, Boström D, Kwong CW, Wang D, Cole AJ, De Nys R, Gentili FG, Ashman PJ (2015) Cogasification of Australian brown coal with algae in a fluidized bed reactor. Energy Fuel 29:1686–1700

    Article  Google Scholar 

  54. Zhu Y, Piotrowska P, Van Eyk PJ, Boström D, Wu X, Boman C, Broström M, Zhang J, Kwong CW, Wang D, Cole AJ, De Nys R, Gentili FG, Ashman PJ (2016) Fluidized bed co-gasification of algae and wood pellets: gas yields and bed agglomeration analysis. Energy Fuel 30:1800–1809

    Article  Google Scholar 

  55. Aziz M (2015) Integrated supercritical water gasification and a combined cycle for microalgal utilization. Energ Convers Manage 91:140–148

    Article  Google Scholar 

  56. Haiduc AC, Branderberger M, Suquet S, Vogel F, Bernier-Latmani R, Ludwig C (2009) SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. J Appl Phycol 21:529–541

    Article  Google Scholar 

  57. Chakinala AG, Brilman D, Swaaij W, Kersten S (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49:1113–1122

    Article  Google Scholar 

  58. Kersten SRA, Potic B, Prins W, VanSwaaij WPM (2006) Gasification of model compounds and wood in hot compressed water. Ind Eng Chem Res 45:4169–4177

    Article  Google Scholar 

  59. Vogel F (2010) Catalytic conversion of high-moisture biomass to synthetic natural gas in supercritical water. In: Crabtree R (ed) Handbook of green chemistry, vol 3. Wiley, Weinheim, pp 281–324

    Google Scholar 

  60. Kumar S (2012) Sub- and supercritical water-based processes for microalgae to biofuels. In: Gordon R, Seckbach J (eds) The science of algal fuels. Springer, Amsterdam, pp 467–493

    Chapter  Google Scholar 

  61. Matsumura Y, Minowa T, Potic B, Kersten SRA, Prins W, van Swaaij WPM et al (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29:269–292

    Article  Google Scholar 

  62. YJ L, Jin H, Guo LJ, Zhang XM, Cao CQ, Guo X (2008) Hydrogen production by biomass gasification in supercritical water with a fluidized bed reactor. Int J Hydrog Energy 33:6066–6075

    Article  Google Scholar 

  63. Calzavara Y, Joussot-Dubien C, Boissonnet G, Sarrade S (2005) Evaluation of biomass gasification in supercritical water process for hydrogen production. Energ Convers Manage 46:615–631

    Article  Google Scholar 

  64. Fiori L, Valbusa M, Castello D (2012) Supercritical water gasification of biomass for H2 production: process design. Bioresour Technol 121:139–147

    Article  Google Scholar 

  65. Liao B, Guo L, Lu Y, Zhang X (2013) Solar receiver/reactor for hydrogen production with biomass gasification in supercritical water. Int J Hydrog Energy 29:13038–13044

    Article  Google Scholar 

  66. Lange S, Pellegrini LA (2014) Study of hydrogen potentiality from supercritical water gasification of different biomasses: thermodynamic analysis and comparison with experimental data. Chem Eng Trans 37:175–180

    Google Scholar 

  67. Abuadala A, Dincer I (2012) A review on biomass-based hydrogen production and potential applications. Int J Energy Res 36:415–455

    Article  Google Scholar 

  68. Chiaramonti D, Prussi M, Buffi M, Maria A, Pari L (2016) Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production. Appl Energy 185:1–10

    Google Scholar 

  69. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  Google Scholar 

  70. Aziz M, Prawisudha P, Prabowo B, Budiman BA (2015) Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems. Appl Energy 139:188–195

    Article  Google Scholar 

  71. Aziz M, Oda T, Mitani T, Kurokawa T, Kawasaki N, Kashiwagi T (2015) Enhanced energy utilization system of algae: Integrated drying, gasification and combined cycle. Energy Procedia 75:906–911

    Article  Google Scholar 

  72. Show KY, Lee DJ, Tay JH, Lin CY, Chang JS (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrog Energy 37:15616–15631

    Article  Google Scholar 

  73. Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102:8589–8604

    Article  Google Scholar 

  74. Lee MJ, Song JH, Hwang SJ (2009) Effects of acid pre-treatment on bio-hydrogen production and microbial communities during dark fermentation. Bioresour Technol 100:1491–1493

    Article  Google Scholar 

  75. Hallenbeck PC, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrog Energy 27:1185–1193

    Article  Google Scholar 

  76. Fan LS (2010) Chemical looping systems for fossil energy conversions. Wiley, Hoboken

    Book  Google Scholar 

  77. Gupta S, Cox S, Abu-Ghannam N (2011) Effect of different drying temperatures on the moisture of phytochemical constituents of edible Irish brown seaweed. LWT-Food Sci Technol 44:1266–1272

    Article  Google Scholar 

  78. Gnanapragasam NV, Reddy BV, Rosen MA (2009) Hydrogen production from coal using coal direct chemical looping and syngas chemical looping combustion systems: assessment of system operation and resource requirements. Int J Hydrog Energy 34:2606–2615

    Article  Google Scholar 

  79. Aziz M, Juangsa FB, Kurniawan W, Budiman BA (2016) Clean co-production of H2 and power from low rank coal. Energy 116:489–497

    Article  Google Scholar 

  80. Aziz M, Zaini IN, Oda T, Morihara A, Kashiwagi T Energy conservative brown coal conversion to hydrogen and power based on enhanced process integration: integrated drying, coal direct chemical looping, combined cycle and hydrogenation. Int J Hydrog Energy 42:2904–2913

    Article  Google Scholar 

  81. Huggins RA (2010) Energy storage. Springer, New York

    Book  Google Scholar 

  82. Teichmann D, Arlt W, Wasserscheid P (2012) Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy. Int J Hydrog Energy 37:18118–18132

    Article  Google Scholar 

  83. Aziz M, Oda T, Kashiwagi T (2015) Clean hydrogen production from low rank coal: novel integration of drying, gasification, chemical looping, and hydrogenation. Chem Eng Trans 45:613–618

    Google Scholar 

  84. Kotani Y, Aziz M, Kansha Y, Fushimi C, Tsutsumi A (2013) Magnetocaloric heat circulator based on self-heat recuperation technology. Chem Eng Sci 101:5–12

    Article  Google Scholar 

  85. Liu Y, Aziz M, Kansha Y, Bhattacharya S, Tsutsumi A (2014) Application of the self-heat recuperation technology for energy saving in biomass drying system. Fuel Process Technol 117:66–74

    Article  Google Scholar 

  86. Prabowo B, Aziz M, Umeki K, Susanto H, Yan M, Yoshikawa K (2015) CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation. Appl Energy 158:97–106

    Article  Google Scholar 

  87. Kansha Y, Kotani Y, Aziz M, Kishimoto A, Tsutsumi A (2013) Evaluation of a self-heat recuperative thermal process based on thermodynamic irreversibility and exergy. J Chem Eng Jpn 46:87–91

    Article  Google Scholar 

  88. Aziz M, Kurniawan T, Oda T, Kashiwagi T Advanced power generation using biomass wastes from palm oil mills. Appl Thermal Eng 114:1378–1386

    Article  Google Scholar 

  89. Aziz M (2016) Integrated hydrogen production and power generation from microalgae. Int J Hydrog Energy 41:104–112

    Article  Google Scholar 

  90. Liu K, Song C, Subramani V (2010) Hydrogen and syngas production and purification technologies. Wiley, Hoboken

    Google Scholar 

  91. Cersosimo M, Brunetti A, Drioli E, Firorino F, Dong G, Woo KT et al (2015) Separation of CO2 from humidified ternary gas mixtures using thermally rearranged polymeric membranes. J Membr Sci 492:257–262

    Article  Google Scholar 

  92. Zaini IN, Nurdiawati A, Aziz M (2017) Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae. Appl Energy., in press. https://doi.org/10.1016/j.apenergy.2017.06.071

    Article  Google Scholar 

  93. Shen L, Gao Y, Xiao J (2008) Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass Bioenergy 32:120–127

    Article  Google Scholar 

Books and Reviews

  • Borowitzka M, Moheimani NR (2013) Algae for biofuels and energy. Springer, Amsterdam

    Book  Google Scholar 

  • Demirbas A, Demirbas MF (2010) Algae energy: algae as a new source of biodiesel. Springer, London

    Book  Google Scholar 

  • Pandey A, Lee DJ, Chisti Y, Soccol R (2014) Biofuels from algae. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aziz .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aziz, M., Zaini, I.N. (2019). Hydrogen Production from Algal Pathways. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_958

Download citation

Publish with us

Policies and ethics