Skip to main content

Hydrogen Production Through Electrolysis

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

Glossary

Applied voltage Eap (V):

is also called supplemental voltage, in order to to obtain measurable current and hydrogen at the cathode of MEC from the combination of these protons and electrons, 0.2 V or more is needed

Biocathode:

A biocathode can be defined as an electrode from cheap material (e.g., carbon) with a microbial population present at the electrode or in the electrolyte that catalyzes the cathodic reaction. To act as a biocathode in an MEC, microorganisms need to be able to take up electrons from the electrode material and use these electrons to produce hydrogen

British thermal unit (Btu or BTU):

A BTU was originally defined as the amount of heat required to raise the temperature of 1 avoirdupois pound of liquid water by 1 degree Fahrenheit at a constant pressure of one atmosphere

COD removal (%):

ΔCOD = CODf - CODin / CODin × 100% Where CODin was the initial COD concentration of the electrolyte; CODfwas the final COD concentration of the effluent after each batch...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrog Energy 39:1–12

    Article  Google Scholar 

  2. Almatouq A, Babatunde AO (2017) Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell. Bioresour Technol 237:193–203

    Article  Google Scholar 

  3. Borole AP, Hamilton CY, Vishnivetskaya T, Leak D, Andras C (2009) Improving power production in acetate-fed microbial fuel cells via enrichment of exoelectrogenic organisms in flow-through systems. Biochem Eng J 48:71–80

    Article  Google Scholar 

  4. Call DF, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ Sci Technol 42:3401–3406

    Article  Google Scholar 

  5. Call DF, Merrill MD, Logan BE (2009) High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environ Sci Technol 43:2179–2183

    Article  Google Scholar 

  6. Catal T, Lesnik KL, Liu H (2015) Suppression of methanogenesis for hydrogen production in single chamber microbial electrolysis cells using various antibiotics. Bioresour Technol 187:77–83

    Article  Google Scholar 

  7. Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS (2010) Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int J Hydrog Energy 35(24):13379–13386

    Article  Google Scholar 

  8. Chen Y, Xu Y, Chen L, Li P, Zhu S, Shen S (2015) Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes. Energy 88:377–384

    Article  Google Scholar 

  9. Chen Y, Shen J, Huang L, Pan Y, Quan X (2016) Enhanced Cd(II) removal with simultaneous hydrogen production in biocathode microbial electrolysis cells in the presence of acetate or NaHCO3. Int J Hydrog Energy 41(31):13368–13379

    Article  Google Scholar 

  10. Cheng S, Logan BE (2007) Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci U S A 104:18871–18873

    Article  Google Scholar 

  11. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43(10):3953–3958

    Article  Google Scholar 

  12. Cherkasov N, Ibhadon A, Fitzpatrick PA (2015) review of the existing and alternative methods for greener nitrogen fixation. Chem Eng Process 90:24–33

    Article  Google Scholar 

  13. Choi C, Hu N (2016) The modeling of gold recovery from tetrachloroaurate wastewater using a microbial fuel cell. Bioresour Technol 133:589–598

    Article  Google Scholar 

  14. Clauwaert P, Toledo R, van der Ha D, Crab R, Verstraete W, Hu H, Udert KM, Rabaey K (2008) Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci Technol 57(4):575–579

    Article  Google Scholar 

  15. Cusick RD, Kiely PD, Logan BE (2010) A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic waste waters. Int J Hydrog Energy 35:8855–8861

    Article  Google Scholar 

  16. Cusick RD, Bryan B, Parker DS, Merrill MD, Mehanna M, Kiely PD, Liu G, Logan BE (2011) Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl Microbiol Biotechnol 89:2053–2063

    Article  Google Scholar 

  17. Dai H, Yang H, Liu X, Jian X, Liang Z (2016) Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell. Fuel 174:251–256

    Article  Google Scholar 

  18. Ditzig J, Liu H, Logan BE (2007) Production of hydrogen from domestic waste water using a bioelectrochemically assisted microbial reactor (BEAMR). Int J Hydrog Energy 32(13):2296–2304

    Article  Google Scholar 

  19. EIA: International Energy Outlook (2016) Chapter 1 World energy and economic outlook. https://www.eia.gov/outlooks/ieo/world.cfm

  20. Fang HHP, Liu H, Zhang T (2005) Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrog Energy 30:785–793

    Article  Google Scholar 

  21. Farhangi S, Ebrahimi S, Niasar MS (2014) Commercial materials as cathode for hydrogen production in microbial electrolysis cell. Biotechnol Lett 36(10):1987–1992

    Article  Google Scholar 

  22. Foley JM, Rozendal RA, Hertle CK, Lant PA, Rabaey K (2010) Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ Sci Technol 44(9):3629–3637

    Article  Google Scholar 

  23. Fu L, You SJ, Zhang GQ, Yang FL, Fang XH (2010) Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell. Chem Eng J 160(1):164–169

    Article  Google Scholar 

  24. Fu Q, Kobayashi H, Kuramochi Y, Xu J, Wakayama T, Maeda H, Sato K (2013) Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production. Int J Hydrog Energy 38(35):15638–15645

    Article  Google Scholar 

  25. Gorby YA, Yamina S, Mclean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363

    Article  Google Scholar 

  26. Gralnick JA, Newman DK (2007) Extracellular respiration. Mol. Microbiology 65:1–11

    Google Scholar 

  27. Haddadi S, Nabi-Bidhendi G, Mehrdadi N (2014) Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane. J Environ Health Sci Eng 12:48

    Article  Google Scholar 

  28. Hallenbeck PC, Ghosh D, Skonieczny MT, Yargeau V (2009) Microbiological and engineering aspects of biohydrogen production. Indian J Microbiol 49:48–59

    Article  Google Scholar 

  29. Heidrich ES, Curtis TP, Dolfing J (2011) Determination of the internal chemical energy of wastewater. Environ Sci Technol 45:827–832

    Article  Google Scholar 

  30. Heidrich ES, Dolfing J, Scott K, Edwards SR, Jones C, Curtis TP (2012) Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl Microbiol Biotechnol 97(15):6979–6989

    Article  Google Scholar 

  31. Heidrich ES, Edwards SR, Dolfing J, Cotterill SE, Curtis TP (2014) Performance of a pilot scale microbial electrolysis cell fed on domestic wastewater at ambient temperatures for a 12 month period. Bioresour Technol 173:87–95

    Article  Google Scholar 

  32. Hou Y, Zhang R, Luo H, Liu G, Kim Y, Yu S, Zeng J (2015) Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production. Process Biochem 50(7):1103–1109

    Article  Google Scholar 

  33. Hrapovic S, Manuel MF, Luong J, Guiot S, Tartakovsky B (2010) Electrodeposition of nickel particles on a gas diffusion cathode for hydrogen production in a microbial electrolysis cell. Int J Hydrog Energy 35:7313–7320

    Article  Google Scholar 

  34. Hu H, Fan Y, Liu H (2008) Hydrogen production using single-chamber membrane-free microbial electrolysis cells. Water Res 42:4172–4178

    Article  Google Scholar 

  35. Hu H, Fan Y, Liu H (2009) Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. Int J Hydrog Energy 34:8535–8542

    Article  Google Scholar 

  36. Huang Y-X, Liu X-W, Sun X-F, Sheng G-P, Zhang Y-Y, Yan G-M, Wang S-G, A-W X, Yu H-QA (2011) new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. Int J Hydrog Energy 36:2773–2776

    Article  Google Scholar 

  37. Huang L, Jiang L, Wang Q, Quan X, Yang J, Chen L (2014) Cobalt recovery with simultaneous methane and acetate production in biocathode microbial electrolysis cells. Chem Eng J 253:281–290

    Article  Google Scholar 

  38. Hutchinson AJ, Tokash JC, Logan BE (2011) Analysis of carbon fibre brush loading in anodes on startup and performance of microbial fuel cells. J Power Sources 196:9213–9219

    Article  Google Scholar 

  39. Ivanov I, Ren L, Siegert M, Logan BEA (2013) quantitative method to evaluate microbial electrolysis cell effectiveness for energy recovery and wastewater treatment. Int J Hydrog Energy 38(30):13135–13142

    Article  Google Scholar 

  40. Jain IP (2009) Hydrogen the fuel for 21st century. Int J Hydrog Energy 34(17):7368–7378

    Article  Google Scholar 

  41. Jeremiasse AW, Hamelers HVM, Buisman CJN (2010a) Microbial electrolysis cell with a microbial biocathode. Bioelectrochemistry 78:39–43

    Article  Google Scholar 

  42. Jeremiasse AW, Hamelers HVM, Saakes M, Buisman CJN (2010b) Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell. Int J Hydrog Energy 35:12716–12723

    Article  Google Scholar 

  43. Kadier A, Simayi Y, Kalil MS, Abdeshahian P, Hamid AAA (2014) review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas. Renew Energy 71:466–472

    Article  Google Scholar 

  44. Kadier A, Simayi Y, Chandrasekhar K, Ismail M, Kalil MS (2015) Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC). Int J Hydrogen Energy 40(41):14095–14103

    Article  Google Scholar 

  45. Kadier A, Kalil MS, Abdeshahian P, Chandrasekhar K, Mohamed A, Azman NF, Logroño W, Simayi Y, Hamid AA (2016) Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value- added chemicals. Renew Sust Energ Rev 61:501–525

    Article  Google Scholar 

  46. Kadier A, Simayi Y, Abdeshahian P, Azman NF, Chandrasekhar K, Kalil MS (2016) A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Eng J 55:427–443

    Article  Google Scholar 

  47. Kadier A, Kalil MS, Mohamed A, Hasan AA, Abdeshahian P, Fooladi T, Hamid AA (2017) Microbial electrolysis cells (MEC) as innovative technology for sustainable hydrogen production: Fundamentals and perspective applications. In: Sankir M, Sankir ND (eds) Hydrogen Production Technologies. Wiley-Scrivener Publishing LLC, Hoboken, pp 407–458

    Chapter  Google Scholar 

  48. Kapdan L, Kargi F (2006) Biohydrogen production from waste materials. Enzyme Microb Technol 38:569–582

    Article  Google Scholar 

  49. Khan MZ, Sim YL, Lin YJ, Lai KM (2012) Testing biological effects of hand-washing grey water for reuse in irrigation on an urban farm: a case study. Environ Technol 34:545–551

    Article  Google Scholar 

  50. Khan MZ, Singh S, Sreekrishnan TR, Ahammad SZ (2014) Feasibility study on anaerobic biodegradation of azo dye reactive orange 16. RSC Adv 4:46851–46859

    Article  Google Scholar 

  51. Khan MZ, Nizami AS, Rehan M, Ouda OKM, Sultana S, Ismail IM, Shahzad K (2017) Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia. Appl Energy 185(P1):410–420

    Article  Google Scholar 

  52. Kiely PD, Cusick R, Call DF, Selembo PA, Regan JM, Logan BE (2011) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour Technol 102:388–394

    Article  Google Scholar 

  53. Kumar A, Katuri K, Lens P, Leech D (2012) Does bioelectrochemical cell configuration and anode potential affect biofilm response? Biochem Soc Trans 40(6):1308–1314

    Article  Google Scholar 

  54. Kuntke P, Sleutels THJA, Saakes M, Buisman CJN (2014) Hydrogen production and ammonium recovery from urine by a Microbial Electrolysis Cell. Int J Hydrog Energy 39(10):4771–4778

    Article  Google Scholar 

  55. Lalaurette E, Thammannagowda S, Mohagheghi A, Maness PC, Logan BE (2009) Hydrogen production from cellulose in a two-stage process combining fermentation and electrohydrogenesis. Int J Hydrog Energy 34:6201–6210

    Article  Google Scholar 

  56. Lee HS, Rittmann BE (2009) Characterization of energy losses in an upflow single-chamber microbial electrolysis cell. Int J Hydrog Energy 35:920–927

    Article  Google Scholar 

  57. Liu H, Grot S, Logan BE (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39(11):4317–4320

    Article  Google Scholar 

  58. Liu YP, Wang YH, Wang BS, Chen QY (2014) Effect of anolyte pH and cathode Pt loading o electricity and hydrogen co-production performance of the bioelectrochemical system. Int J Hydrog Energy 39:14191–14195

    Article  Google Scholar 

  59. Logan BE, Aelterman P, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  Google Scholar 

  60. Logan B, Call D, Cheng S, Hamelers HM, Tomh Sleutels JA, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42:8630–8640

    Article  Google Scholar 

  61. Lorenzo DM, Scott K, Curtis TP, Katuri KP, Head IM (2009) Continuous feed microbial fuel cell using an air cathode and a disc anode stack for wastewater treatment. Energy Fuel 23:5707–5716

    Article  Google Scholar 

  62. Lu L, Ren ZJ (2016) Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresour Technol 215:254–264

    Article  Google Scholar 

  63. Lu L, Ren NQ, Xing DF, Logan BE (2009) Hydrogen production with effluent from an ethanol–H2-coproducing fermentation reactor using a single-chamber microbial electrolysis cell. Biosens Bioelectron 24:3055–3060

    Article  Google Scholar 

  64. Lu L, Xing D, Liu B, Ren N (2012a) Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells. Water Res 46(4):1015–1026

    Article  Google Scholar 

  65. Lu L, Xing D, Ren N (2012b) Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res 46(7):2425–2434

    Article  Google Scholar 

  66. Lu L, Hou D, Fang Y, Huang Y, Ren ZJ (2016) Nickel based catalysts for highly efficient H2 evolution from wastewater in microbial electrolysis cells. Electrochim Acta 206:381–387

    Article  Google Scholar 

  67. Mahmoud M, Parameswaran P, Torres CI, Rittmann BE (2014) Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell. Bioresour Technol 151:151–158

    Article  Google Scholar 

  68. Mazloomi K, Gomes C (2012) Hydrogen as an energy carrier: prospects and challenges. Renew Sust Energ Rev 16:3024–3033

    Article  Google Scholar 

  69. Montpart N, Rago L, Baeza JA, Guisasola A (2015) Hydrogen production in single chamber microbial electrolysis cells with different complex substrates. Water Res 68:601–615

    Article  Google Scholar 

  70. Nam JY, Tokash JC, Logan BE (2011) Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential. Int J Hydrog Energy 36:10550–10556

    Article  Google Scholar 

  71. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103–e00110

    Article  Google Scholar 

  72. Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405(6782):94–97

    Article  Google Scholar 

  73. Nidheesh PV, Gandhimathi R, Ramesh ST (2013) Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res 20:2099–2132

    Article  Google Scholar 

  74. Nimje VR, Chen CY, Chen CC, Chen HR, Tseng MJ, Jean JS et al (2011) Glycerol degradation in single-chamber microbial fuel cells. Bioresour Technol 102(3):2629–2634

    Article  Google Scholar 

  75. Pagliaro MV, Bellini M, Bevilacqua M, Filippi J, Folliero MG, Marchionni A, Miller HA, Oberhauser W, Caporali S, Innocentiae M, Vizza F (2017) Carbon supported Rh nanoparticles for the production of hydrogen and chemicals by the electroreforming of biomass-derived alcohols. RSC Adv 7:13971–13978

    Article  Google Scholar 

  76. Pant D, Singh A, Bogaert GV, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263

    Article  Google Scholar 

  77. Pham TH, Rabaey K, Aelterman P, Clauwaert P, De Schamphelaire L, Boon N et al (2006) Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng Life Sci 6:285–292

    Article  Google Scholar 

  78. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716

    Article  Google Scholar 

  79. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  Google Scholar 

  80. Ren L, Siegert M, Ivanov I, Pisciotta JM, Logan BE (2013) Treatability studies on different refinery wastewater samples using high throughput microbial electrolysis cells (MECs). Bioresour Technol 136:322–328

    Article  Google Scholar 

  81. Ribot-Llobet E, Nam J-Y, Tokash JC, Guisasola A, Logan BE (2013) Assessment of four different cathode materials at different initial pHs using unbuffered catholytes in microbial electrolysis cells. Int J Hydrog Energy 38:2951–2956

    Article  Google Scholar 

  82. Rozendal RA, Hamelers HVM, Euverink GJW, Metz SJ, Buisman CJN (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31(12):1632–1640

    Article  Google Scholar 

  83. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2007) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  Google Scholar 

  84. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  Google Scholar 

  85. Rozendal RA, Leone E, Keller J, Rabaey K (2009) Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem Commun 11(9):1752–1755

    Article  Google Scholar 

  86. Selembo PA, Merrill MD, Logan BE (2009) The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J Power Sources 190:271–278

    Article  Google Scholar 

  87. Sosa-Hernández O, Popat SC, Parameswaran P, Alemán-Nava GS, Torres CI, Buitrón G, Parra-Saldívar R (2016) Application of microbial electrolysis cells to treat spent yeast from an alcoholic fermentation. Bioresour Technol 200:342–349

    Article  Google Scholar 

  88. Steinbusch KJJ, Hamelers HVM, Schaap JD, Kampman C, Buisman CJN (2010) Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ Sci Technol 44(1):513–517

    Article  Google Scholar 

  89. Su M, Wei L, Qiu Z, Wang G, Shen J (2016) Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes. J Power Sources 301:29–34

    Article  Google Scholar 

  90. Sun R, Xing D, Jia J, Liu Q, Zhou A, Bai S, Ren N (2014) Optimization of high-solid waste activated sludge concentration for hydrogen production in microbial electrolysis cells and microbial community diversity analysis. Int J Hydrog Energy 39(35):19912–19920

    Article  Google Scholar 

  91. Tenca A, Cusick RD, Schieuano A, Oberti R, Logan BE (2013) Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells. Int J Hydrog Energy 38(4):1859–1865

    Article  Google Scholar 

  92. Tice RC, Kim Y (2014) Methanogenesis control by electrolytic oxygen production in microbial electrolysis cells. Int J Hydrog Energy 39:3079–3086

    Article  Google Scholar 

  93. Tokash JC, Logan BE (2011) Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells. Int J Hydrog Energy 36:9439–9445

    Article  Google Scholar 

  94. Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode- respiring bacteria. FEMS Microbiol Rev 34(1):3–17

    Article  Google Scholar 

  95. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 10:3085–3090

    Article  Google Scholar 

  96. Villano M, Monaco G, Aulenta F, Majone M (2011) Electrochemically assisted methane production in a biofilm reactor. J Power Sources 196(22):9467–9472

    Article  Google Scholar 

  97. Von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623

    Article  Google Scholar 

  98. Wagner RC, Regan JM, SE O, Zuo Y, Logan BE (2009) Hydrogen and methane production from swine wastewater using microbial electrolysis cells. Water Res 43:1480–1488

    Article  Google Scholar 

  99. Wang L, Chen Y, Huang Q, Feng Y, Zhu S, Shen S (2012) Hydrogen production with carbon nanotubes based cathode catalysts in microbial electrolysis cells. J Chem Technol Biotechnol 87(8):1150–1156

    Article  Google Scholar 

  100. Wang J, Xu S, Xiao B, Xu M, Yang L, Liu S et al (2013) Influence of catalyst and temperature on gasification performance of pig compost for hydrogen-rich gas production. Int J Hydrog Energy 38:14200–14207

    Article  Google Scholar 

  101. Wang M, Wang Z, Gong X, Guo Z (2014) The intensification technologies to water electrolysis for hydrogen production – a review. Renew Sust Energ Rev 29:573–588

    Article  Google Scholar 

  102. Wang Y, Guo WQ, Xing DF, Chang JS, Ren MQ (2015) Hydrogen production using biocathode single-chamber microbial electrolysis cells fed by molasses wastewater at low temperature. Int J Hydrog Energy 39(33):19369–19375

    Article  Google Scholar 

  103. Wu TT, Englehardt JD (2012) A new method for removal of hydrogen peroxide interference in the analysis of chemical oxygen demand. Environ Sci Technol 46:2291–2298

    Article  Google Scholar 

  104. Wu T, Zhu G, Jha AK, Zou R, Liu L, Huang X, Liu C (2013) Hydrogen production with effluent from an anaerobic baffled reactor (ABR) using a single-chamber microbial electrolysis cell (MEC). Int J Hydrog Energy 38(25):11117–11123

    Article  Google Scholar 

  105. Xiao L, Wen Z, Ci S, Chen J, He Z (2012) Carbon/iron-based nanorod catalysts for hydrogen production in microbial electrolysis cells. Nano Energy 1:751–756

    Article  Google Scholar 

  106. Yang Q, Jiang Y, Xu Y, Qiu Y, Chen Y, Zhu S, Shen S (2014) Hydrogen production with polyaniline/multi-walled carbon nanotube cathode catalysts in microbial electrolysis cells. J Chem Technol Biotechnol 70(7):1263–1269

    Google Scholar 

  107. Yang Q, Jiang Y, Xu Y, Qiu Y, Chen Y, Zhu S, Shen S (2015) Hydrogen production with polyaniline/multi-walled carbon nanotube cathode catalysts in microbial electrolysis cells. J Chem Technol Biotechnol 90(7):1263–1269

    Article  Google Scholar 

  108. You SJ, Wang JY, Ren NQ, Wang XH, Zhang JN (2010) Sustainable conversion of glucose into hydrogen peroxide in a solid polymer electrolyte microbial fuel cell. ChemSusChem 3(3):334–338

    Article  Google Scholar 

  109. Yuan H, Li J, Yuan C, He Z (2014) Facile synthesis of MoS2@ CNT as an effective catalyst for hydrogen production in microbial electrolysis cells. ChemElectroChem 1(11):1828–1833

    Article  Google Scholar 

  110. Zhang Y, Merrill MD, Logan BE (2010) The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells. Int J Hydrog Energy 35:12020–12028

    Article  Google Scholar 

  111. Zhang Y, Wang Y, Angelidaki I (2015) Alternate switching between microbial fuel cell and microbial electrolysis cell operation as a new method to control H2O2 level in Bioelectro-Fenton system. J Power Sources 291:108–116

    Article  Google Scholar 

  112. Zhao HZ, Zhang Y, Chang YY, Li ZS (2012) Conversion of a substrate carbon source to formic acid for carbon dioxide emission reduction utilizing series-stacked microbial fuel cells. J Power Sources 217:59–64

    Article  Google Scholar 

  113. Zhen G, Kobayashi T, Lu X, Xu K (2015) Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode. Bioresour Technol 186:141–148

    Article  Google Scholar 

  114. Zhen G, Lu X, Kobayashi T, Kumara G, Xu K (2016) Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF). Chem Eng J 284:1146–1155

    Article  Google Scholar 

  115. Zhuang L, Zhou S, Yuan Y, Liu M, Wang Y (2010) A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation. Chem Eng J 163(1–2):160–163

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National University of Malaysia (UKM), Project No: DIP-2012-30 and the Malaysian Ministry of Higher Education (MOHE). Special thanks to the Head of Project (D-I-P-2012-30), Prof. Dr. Azah Bt Mohamed, and members.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abudukeremu Kadier .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kadier, A., Kalil, M.S., Logroño, W., Mohamed, A., Hasan, H.A. (2019). Hydrogen Production Through Electrolysis. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_954

Download citation

Publish with us

Policies and ethics