Skip to main content

Biohydrogen Production

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

Glossary

Microalgae:

As a general terminology, this word covers all the prokaryotic and eukaryotic algae without considering the taxonomic specifications. However, from a taxonomic point of view, it specifically comprises the eukaryotic photosynthetic microorganisms such as green algae and diatoms.

Green algae:

The unicellular or colony-forming single-celled eukaryotic photosynthetic organisms abundant in aquatic environments.

Cyanobacteria:

The unicellular or filamentous single-celled prokaryotic photosynthetic organisms abundant in aquatic environments, also known as blue-green algae.

Photobiological hydrogen production:

The capability of microalgae to catalyze the conversion reaction of H+ to H2 in gas form via hydrogenase enzymes under illuminated conditions.

D1 protein:

A major photosynthetic protein responsible for the constant repair of the photosystem II (PSII) damage from the oxygen generation.

Homologous expression:

The expression of a gene in the same species using...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Voldsund M, Jordal K, Anantharaman R (2016) Hydrogen production with CO2 capture. Int J Hydrog Energy 41(9):4969–4992

    Article  Google Scholar 

  2. Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew Sust Energ Rev 57:850–866

    Article  Google Scholar 

  3. Oncel SS (2013) Microalgae for a macroenergy world. Renew Sust Energ Rev 26:241–264

    Article  Google Scholar 

  4. Ghirardi ML, Dubini A, Yu J, Maness P-C (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52–61

    Article  Google Scholar 

  5. Tekucheva DN, Tsygankov AA (2012) Coupled biological hydrogen-producing systems: a review. Prikl Biokhim Mikrobiol 48(4):357–375

    Google Scholar 

  6. Boboescu IZ, Gherman VD, Lakatos G, Pap B, Bíró T, Maróti G (2016) Surpassing the current limitations of biohydrogen production systems: the case for a novel hybrid approach. Bioresour Technol 204:192–201

    Article  Google Scholar 

  7. Zhang D, Vassiliadis VS (2015) Chlamydomonas reinhardtii metabolic pathway analysis for biohydrogen production under non-steady-state operation. Ind Eng Chem Res 54(43):10593–10605

    Article  Google Scholar 

  8. Rashid N, Rehman MSU, Memon S, Ur Rahman Z, Lee K, Han JI (2013) Current status, barriers and developments in biohydrogen production by microalgae. Renew Sust Energ Rev 22:571–579

    Article  Google Scholar 

  9. Dasgupta CN, Jose Gilbert J, Lindblad P, Heidorn T, Borgvang SA, Skjanes K, Das D (2010) Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production. Int J Hydrog Energy 35(19):10218–10238

    Article  Google Scholar 

  10. Lopes Pinto FA, Troshina O, Lindblad P (2002) A brief look at three decades of research on cyanobacterial hydrogen evolution. Int J Hydrog Energy 27(11–12):1209–1215

    Article  Google Scholar 

  11. Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  Google Scholar 

  12. Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrog Energy 34(17):7404–7416

    Article  Google Scholar 

  13. Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC (2011) The role of the bidirectional hydrogenase in cyanobacteria. Bioresour Technol 102(18):8368–8377

    Article  Google Scholar 

  14. Peters JW, Schut GJ, Boyd ES, Mulder DW, Shepard EM, Broderick JB, King PW, Adams MWW (2015) [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim Biophys Acta 1853(6):1350–1369

    Article  Google Scholar 

  15. Huesemann MH, Hausmann TS, Carter BM, Gerschler JJ, Benemann JR (2010) Hydrogen generation through indirect biophotolysis in batch cultures of the nonheterocystous nitrogen-fixing cyanobacterium plectonema boryanum. Appl Biochem Biotechnol 162(1):208–220

    Article  Google Scholar 

  16. Allahverdiyeva Y, Aro EM, Kosourov SN (2014) Recent developments on cyanobacteria and green algae for biohydrogen photoproduction and its importance in CO2 reduction. In Bioenergy research : advances and applications. Eds: Gupta VK, Tuohy MG, Kubicek CP, Saddler J, Xu F. Amsterdam Elsevier

    Google Scholar 

  17. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    Article  Google Scholar 

  18. Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  Google Scholar 

  19. Oncel S, Kose A, Vardar F, Torzillo G (2015) From Ancient Tribes to Modern Societies, Microalgae Evolution from a Simple Food to an Alternative Fuel Source. In: Handbook of Marine Microalgae Ed: Kim SK, Biotechnology Advances Academic Press 127–144

    Google Scholar 

  20. Scoma A, Giannelli L, Faraloni C, Torzillo G (2012) Outdoor H2 production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. J Biotechnol 157(4):620–627

    Article  Google Scholar 

  21. Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30:904–912

    Article  Google Scholar 

  22. Giannelli L, Torzillo G (2012) Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrog Energy 37(22):16951–16961

    Article  Google Scholar 

  23. Oncel S, Kose A (2014) Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity Bioresource Technol 151: 265–270

    Article  Google Scholar 

  24. Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135:142–149

    Article  Google Scholar 

  25. Yen H, Hu I, Chen C, Ho S, Lee D, Chang J (2013) Biore source technology microalgae-based biorefinery – from biofuels to natural products. Bioresour Technol 135:166–174

    Article  Google Scholar 

  26. Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23(3):346–351

    Article  Google Scholar 

  27. Rochaix JD (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu Rev Genet 29:209–230

    Article  Google Scholar 

  28. Angermayr SA, Gorchs Rovira A, Hellingwerf KJ (2015) Metabolic engineering of cyanobacteria for the synthesis of commodity products. Trends Biotechnol 33(6):352–361

    Article  Google Scholar 

  29. Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19(6):556–563

    Article  Google Scholar 

  30. Reaction O, Algae IN, Gaffron BYH (1942) OXYHYDROGEN REACTION IN ALGAE (From the Department of Chemistry, The University of Chicago, Chicago). J Gen Physiol

    Google Scholar 

  31. Oh YK, Raj SM, Jung GY, Park S (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102(18):8357–8367

    Article  Google Scholar 

  32. Akkerman I, Janssen M, Rocha J, Wijffels RH (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int J Hydrog Energy 27(11–12):1195–1208

    Article  Google Scholar 

  33. Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102(2):523–540

    Article  Google Scholar 

  34. Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P (2002) Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 66(1):1–20, table of contents

    Article  Google Scholar 

  35. Tamagnini P, Leitão E, Oliveira P, Ferreira D, Pinto F, Harris DJ, Heidorn T, Lindblad P (2007) Cyanobacterial hydrogenases: diversity, regulation and applications. FEMS Microbiol Rev 31(6):692–720

    Article  Google Scholar 

  36. Ghirardi M (2000) Microalgae: a green source of renewable H2. Trends Biotechnol 18(12):506–511

    Article  Google Scholar 

  37. Rupprecht J, Hankamer B, Mussgnug JH, Ananyev G, Dismukes C, Kruse O (2006) Perspectives and advances of biological H2 production in microorganisms. Appl Microbiol Biotechnol 72(3):442–449

    Article  Google Scholar 

  38. Kufryk G (2013) Advances in utilizing cyanobacteria for hydrogen production. Adv Microbiol 3(6):60–68

    Article  Google Scholar 

  39. Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    Article  Google Scholar 

  40. Madamwar D, Garg N, Shah V (2000) Cyanobacterial hydrogen production. World J Microbiol Biotechnol 16(8–9):757–767

    Article  Google Scholar 

  41. Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64(9):1063–1084

    Article  Google Scholar 

  42. Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102(18):8589–8604

    Article  Google Scholar 

  43. Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12:291–300

    Article  Google Scholar 

  44. Melis A (2002) Green alga hydrogen production: progress, challenges and prospects. Int J Hydrog Energy 27(11–12):1217–1228

    Article  Google Scholar 

  45. Torzillo G, Scoma A, Faraloni C, Giannelli L (2014) Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit Rev Biotechnol 8551:1–12

    Google Scholar 

  46. Torzillo G, Seibert M (2013) Hydrogen production by Chlamydomonas reinhardtii. in Handbook of Microalgal Culture: Applied Phycology and Biotechnology, 2nd Edition. Eds: Richmond A, Hu Q, Wiley Blackwell 417–432

    Chapter  Google Scholar 

  47. Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52(1):363–406

    Article  Google Scholar 

  48. Rochaix JD (2002) Chlamydomonas, a model system for studying the assembly and dynamics of photosynthetic complexes. FEBS Lett 529(1):34–38

    Article  Google Scholar 

  49. Hanikenne M (2003) Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. New Phytol 159(2):331–340

    Article  Google Scholar 

  50. Scranton MA, Ostrand JT, Fields FJ, Mayfield SP (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82:523–531

    Article  Google Scholar 

  51. Nickelsen J, Kück U (2000) The unicellular green alga Chlamydomonas reinhardtii as an experimental system to study chloroplast RNA metabolism. Naturwissenschaften 87(3):97–107

    Article  Google Scholar 

  52. Rupprecht J (2009) From systems biology to fuel-Chlamydomonas reinhardtii as a model for a systems biology approach to improve biohydrogen production. J Biotechnol 142(1):10–20

    Article  Google Scholar 

  53. Márquez-Reyes LA, del Pilar Sánchez-Saavedra M, Valdez-Vazquez I (2015) Improvement of hydrogen production by reduction of the photosynthetic oxygen in microalgae cultures of Chlamydomonas gloeopara and Scenedesmus obliquus. Int J Hydrog Energy 40(23):7291–7300

    Article  Google Scholar 

  54. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–136

    Article  Google Scholar 

  55. Antal TK, Krendeleva TE, Rubin AB (2011) Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production. Appl Microbiol Biotechnol 89(1):3–15

    Article  Google Scholar 

  56. Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117(1327):129–139

    Article  Google Scholar 

  57. Godaux D, Emonds-Alt B, Berne N, Ghysels B, Alric J, Remacle C, Cardol P (2013) A novel screening method for hydrogenase-deficient mutants in Chlamydomonas reinhardtii based on in vivo chlorophyll fluorescence and photosystem II quantum yield. Int J Hydrog Energy 38(4):1826–1836

    Article  Google Scholar 

  58. Melis A, Chen HC (2005) Chloroplast sulfate transport in green algae – genes, proteins and effects. Photosynth Res 86(3):299–307

    Article  Google Scholar 

  59. Chochois V, Constans L, Dauvillée D, Beyly A, Solivérs M, Ball S, Peltier G, Cournac L (2010) Relationships between PSII-independent hydrogen bioproduction and starch metabolism as evidenced from isolation of starch catabolism mutants in the green alga Chlamydomonas reinhardtii. Int J Hydrog Energy 35(19):10731–10740

    Article  Google Scholar 

  60. Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrog Energy 34(10):4529–4536

    Article  Google Scholar 

  61. Oncel S, Vardar-Sukan F (2009) Photo-bioproduction of hydrogen by Chlamydomonas reinhardtii using a semi-continuous process regime. Int J Hydrog Energy 34(18):7592–7602

    Article  Google Scholar 

  62. Olaizola M (2003) Commercial development of microalgal biotechnology: From the test tube to the marketplace. Biomol Eng 20(4–6):459–466

    Article  Google Scholar 

  63. Yu N, Dieu LTJ, Harvey S, Lee D-Y (2015) Optimization of process configuration and strain selection for microalgae-based biodiesel production. Bioresour Technol 193:25–34

    Article  Google Scholar 

  64. Simionato D, Basso S, Giacometti GM, Morosinotto T (2013) Optimization of light use efficiency for biofuel production in algae. Biophys Chem 182:71–78

    Article  Google Scholar 

  65. Skjånes K, Rebours C, Lindblad P (2012) Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Crit Rev Biotechnol 33:1–44

    Google Scholar 

  66. Gimpel JA, Specht EA, Georgianna DR, Mayfield SP (2013) Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr Opin Chem Biol 17(3):489–495

    Article  Google Scholar 

  67. Guarnieri MT, Pienkos PT (2015) Algal omics: unlocking bioproduct diversity in algae cell factories. Photosynth Res 123(3):255–263

    Article  Google Scholar 

  68. León R, Couso I, Fernández E (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. J Biotechnol 130(2):143–152

    Article  Google Scholar 

  69. De Bhowmick G, Koduru L, Sen R (2015) Metabolic pathway engineering towards enhancing microalgal lipid biosynthesis for biofuel application – a review. Renew Sust Energ Rev 50:1239–1253

    Article  Google Scholar 

  70. Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: Progress and prospects. J Ind Microbiol Biotechnol 38(12):1879–1890

    Article  Google Scholar 

  71. de Vos MG, Poelwijk FJ, Tans SJ (2013) Optimality in evolution: new insights from synthetic biology. Curr Opin Biotechnol 24(4):797–802

    Article  Google Scholar 

  72. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047

    Article  Google Scholar 

  73. Bogorad L (2000) Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol 18(6):257–263

    Article  Google Scholar 

  74. Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18(2):126–133

    Article  Google Scholar 

  75. Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Rep 24(11):629–641

    Article  Google Scholar 

  76. Malcata FX (2011) Microalgae and biofuels: a promising partnership? Trends Biotechnol 29(11):542–549

    Article  Google Scholar 

  77. Zhang F, Rodriguez S, Keasling JD (2011) Metabolic engineering of microbial pathways for advanced biofuels production. Curr Opin Biotechnol 22(6):775–783

    Article  Google Scholar 

  78. Jones JA, Toparlak ÖD, Koffas MA (2015) Metabolic pathway balancing and its role in the production of biofuels and chemicals. Curr Opin Biotechnol 33:52–59

    Article  Google Scholar 

  79. Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29(12):615–623

    Article  Google Scholar 

  80. Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19(3):228–234

    Article  Google Scholar 

  81. Cerutti H, Ma X, Msanne J, Repas T (2011) RNA-mediated silencing in algae: biological roles and tools for analysis of gene function. Eukaryot Cell 10(9):1164–1172

    Article  Google Scholar 

  82. Oncel S, Kose A, Faraloni C (2015) Genetic Optimization of Microalgae for Biohydrogen Production. In: Handbook of Marine Microalgae Ed: Kim, SK Biotechnology Advances Academic Press 384–404

    Google Scholar 

  83. Chien LF, Kuo TT, Liu BH, Di Lin H, Feng TY, Huang CC (2012) Solar-to-bioH2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT. Int J Hydrog Energy 37(23):17738–17748

    Article  Google Scholar 

  84. Mertens R, Liese A (2004) Biotechnological applications of hydrogenases. Curr Opin Biotechnol 15(4):343–348

    Article  Google Scholar 

  85. Warner JR, Patnaik R, Gill RT (2009) Genomics enabled approaches in strain engineering. Curr Opin Microbiol 12(3):223–230

    Article  Google Scholar 

  86. Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard NU, Sakuragi Y (2012) Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 162(1):134–147

    Article  Google Scholar 

  87. Wannathong T, Waterhouse JC, Young REB, Economou CK, Purton S (2016) New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol:1–11

    Google Scholar 

  88. Keasling JD (1999) Gene-expression tools for the metabolic engineering of bacteria. Trends Biotechnol 17(11):452–460

    Article  Google Scholar 

  89. Doron L, Segal N, Shapira M (2016) Transgene expression in microalgae-from tools to applications. Front Plant Sci 7:505

    Article  Google Scholar 

  90. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20(3):264–271

    Article  Google Scholar 

  91. Galva A, Gonza D, Ferna E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22(1):45–52

    Article  Google Scholar 

  92. Takahashi Y, Utsumi K, Yamamoto Y, Hatano A, Satoh K (1996) Genetic engineering of the processing site of D1 precursor protein of photosystem II reaction center in Chlamydomonas reinhardtii. Plant Cell Physiol 37(2):161–168

    Article  Google Scholar 

  93. Cano M, Volbeda A, Guedeney G, Aubert-Jousset E, Richaud P, Peltier G, Cournac L (2014) Improved oxygen tolerance of the Synechocystis sp. PCC 6803 bidirectional hydrogenase by site-directed mutagenesis of putative residues of the gas diffusion channel. Int J Hydrog Energy 39(30):16872–16884

    Article  Google Scholar 

  94. Jinkerson RE, Jonikas MC (2015) Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome. Plant J 82(3):393–412

    Article  Google Scholar 

  95. Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229(4):873–883

    Article  Google Scholar 

  96. Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Amato A, Falciatore A, Juillerat A, Beurdeley M, Voytas DF, Cavarec L, Duchateau P (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831

    Article  Google Scholar 

  97. Doron L, Segan N, Shapira M (2016) Transgene expression in microagae -from tools to applications. Frontiers in plant science 7:505

    Google Scholar 

  98. Kim E-J, Ma X, Cerutti H (2015) Gene silencing in microalgae: mechanisms and biological roles. Bioresour Technol 184:23–32

    Article  Google Scholar 

  99. Wu S, Xu L, Huang R, Wang Q (2011) Improved biohydrogen production with an expression of codon-optimized hemH and lba genes in the chloroplast of Chlamydomonas reinhardtii. Bioresour Technol 102(3):2610–2616

    Article  Google Scholar 

  100. Bashir KMI, Kim M-S, Stahl U, Cho M-G (2016) Microalgae engineering toolbox: selectable and screenable markers. Biotechnol Bioprocess Eng 21(2):224–235

    Article  Google Scholar 

  101. Guo S-L, Zhao X-Q, Tang Y, Wan C, Alam MA, Ho S-H, Bai F-W, Chang J-S (2013) Establishment of an efficient genetic transformation system in Scenedesmus obliquus. J Biotechnol 163(1):61–68

    Article  Google Scholar 

  102. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15(5):321–334

    Article  Google Scholar 

  103. Shin S-E, Lim J-M, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin W-S, Lee B, Hwangbo K, Kim J, Ye SH, Yun J-Y, Seo H, Oh H-M, Kim K-J, Kim J-S, Jeong W-J, Chang YK, Jeong B (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810

    Article  Google Scholar 

  104. Radakovits R, Eduafo PM, Posewitz MC (2011) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 13(1):89–95

    Article  Google Scholar 

  105. Held NL, Childs LM, Davison M, Weitz JS, Whitaker RJ, Bhaya D (2013) CRISPR-Cas systems to probe ecological diversity and host-viral interactions. In CRISPR-Cas Systems: RNA-Mediated Adaptive Immunity in Bacteria and Archaea (pp. 221–250). Springer Berlin Heidelberg

    Google Scholar 

  106. Godman JE, Molnár A, Baulcombe DC, Balk J (2010) RNA silencing of hydrogenase(-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii. Biochem J 431(3):345–351

    Article  Google Scholar 

  107. Di Lin H, Liu BH, Kuo TT, Tsai HC, Feng TY, Huang CC, Chien LF (2013) Knockdown of PsbO leads to induction of HydA and production of photobiological H2 in the green alga Chlorella sp. DT. Bioresour Technol 143:154–162

    Article  Google Scholar 

  108. Cai F, Axen SD, Kerfeld CA (2013) Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria. RNA Biol 10(5):687–693

    Article  Google Scholar 

  109. Specht E, Miyake-Stoner S, Mayfield S (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32(10):1373–1383

    Article  Google Scholar 

  110. Ringsmuth AK, Landsberg MJ, Hankamer B (2016) Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations? Renew Sust Energ Rev 62:134–163

    Article  Google Scholar 

  111. Sekar N, Ramasamy RP (2015) Recent advances in photosynthetic energy conversion. J Photochem Photobiol C: Photochem Rev 22:19–33

    Article  Google Scholar 

  112. Shin W-S, Lee B, Jeong B, Chang YK, Kwon J-H (2016) Truncated light-harvesting chlorophyll antenna size in Chlorella vulgaris improves biomass productivity. J Appl Phycol

    Google Scholar 

  113. Kirst H, Melis A (2014) The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity. Biotechnol Adv 32(1):66–72

    Article  Google Scholar 

  114. McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21(3):244–251

    Article  Google Scholar 

  115. Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta Lipids Lipid Metab 1302(1):17–45

    Article  Google Scholar 

  116. Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214(4):552–561

    Article  Google Scholar 

  117. Oey M, Ross IL, Stephens E, Steinbeck J, Wolf J, Radzun KA, Kügler J, Ringsmuth AK, Kruse O, Hankamer B (2013) RNAi knock-down of LHCBM1, 2 and 3 Increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii. PLoS One 8(4)

    Article  Google Scholar 

  118. Biggins J, Svejkovsky J (1980) Linear dichroism of microalgae, developing thylakoids and isolated pigment-protein complexes in stretched poly (vinyl alcohol) films at 77 K. Biochim Biophys Acta Bioenerg 592(3):565–576

    Article  Google Scholar 

  119. Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177(4):272–280

    Article  Google Scholar 

  120. Beckmann J, Lehr F, Finazzi G, Hankamer B, Posten C, Wobbe L, Kruse O (2009) Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. J Biotechnol 142(1):70–77

    Article  Google Scholar 

  121. Raven JA (2011) The cost of photoinhibition. Physiol Plant 142(1):87–104

    Article  MathSciNet  Google Scholar 

  122. Lardans A, Gillham NW, Boynton JE (1997) Site-directed mutations at residue 251 of the photosystem II D1 protein of Chlamydomonas that result in a nonphotosynthetic phenotype and impair D1 synthesis and accumulation. J Biol Chem 272(1):210–216

    Article  Google Scholar 

  123. Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280(40):34170–34177

    Article  Google Scholar 

  124. Meuser JE, Boyd ES, Ananyev G, Karns D, Radakovits R, Murthy UMN, Ghirardi ML, Dismukes GC, Peters JW, Posewitz MC (2011) Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A. Planta 234(4):829–843

    Article  Google Scholar 

  125. Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankamer B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol 131(1):27–33

    Article  Google Scholar 

  126. Kim D-H, Kim M-S (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102(18):8423–8431

    Article  Google Scholar 

  127. Leroux F, Liebgott PP, Cournac L, Richaud P, Kpebe A, Burlat B, Guigliarelli B, Bertrand P, Léger C, Rousset M, Dementin S (2010) Is engineering O2-tolerant hydrogenases just a matter of reproducing the active sites of the naturally occurring O2-resistant enzymes? Int J Hydrog Energy 35(19):10770–10777

    Article  Google Scholar 

  128. Shepard EM, Mus F, Betz JN, Byer AS, Duffus BR, Peters JW, Broderick JB (2014) [FeFe]-Hydrogenase maturation. Biochemistry 53(25):4090–4104

    Article  Google Scholar 

  129. Kim S, Lu D, Park S, Wang G (2012) Production of hydrogenases as biocatalysts. Int J Hydrog Energy 37(20):15833–15840

    Article  Google Scholar 

  130. Swanson KD, Ratzloff MW, Mulder DW, Artz JH, Ghose S, Hoffman A, White S, Zadvornyy OA, Broderick JB, Bothner B, King PW, Peters JW (2015) [FeFe]-hydrogenase oxygen inactivation is initiated at the H cluster 2Fe subcluster. J Am Chem Soc 137(5):1809–1816

    Article  Google Scholar 

  131. Posewitz MC, King PW, Smolinski SL, Smith RD, Ginley AR, Ghirardi ML, Seibert M (2005) Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii. Biochem Soc Trans 33(Pt 1):102–104

    Article  Google Scholar 

  132. Cao X, Wu X, Ji C, Yao C, Chen Z, Li G, Xue S (2014) Comparative transcriptional study on the hydrogen evolution of marine microalga Tetraselmis subcordiformis. Int J Hydrog Energy 39(32):18235–18246

    Article  Google Scholar 

  133. Mulder DW, Shepard EM, Meuser JE, Joshi N, King PW, Posewitz MC, Broderick JB, Peters JW (2011) Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 19(8):1038–1052

    Article  Google Scholar 

  134. Friedrich B, Fritsch J, Lenz O (2011) Oxygen-tolerant hydrogenases in hydrogen-based technologies. Curr Opin Biotechnol 22(3):358–364

    Article  Google Scholar 

  135. Chochois V, Dauvillée D, Beyly A, Tolleter D, Cuiné S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen production in Chlamydomonas: photosystem II-dependent and -independent pathways differ in their requirement for starch metabolism. Plant Physiol 151(2):631–640

    Article  Google Scholar 

  136. Meuser JE, D’Adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: insight into the role of HYDA2 in H2 production. Biochem Biophys Res Commun 417(2):704–709

    Article  Google Scholar 

  137. Godaux D, Bailleul B, Berne N, Cardol P (2015) Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and proton-gradient regulation-like1-mediated cyclic electron flow in Chlamydomonas reinhardtii. Plant Physiol 168(2):648–658

    Article  Google Scholar 

  138. Ghirardi ML (2015) Implementation of photobiological H2 production: the O2 sensitivity of hydrogenases. Photosynth Res 125(3):383–393

    Article  Google Scholar 

  139. Horch M, Lauterbach L, Lenz O, Hildebrandt P, Zebger I (2012) NAD(H)-coupled hydrogen cycling – structure-function relationships of bidirectional [NiFe] hydrogenases. FEBS Lett 586(5):545–556

    Article  Google Scholar 

  140. Lambertz C, Chernev P, Klingan K, Leidel N, Sigfridsson KGV, Happe T, Haumann M (2014) Electronic and molecular structures of the active-site H-cluster in [FeFe]-hydrogenase determined by site-selective X-ray spectroscopy and quantum chemical calculations. Chem Sci 5(3):1187

    Article  Google Scholar 

  141. Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS (2013) Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25(11):4305–4323

    Article  Google Scholar 

  142. Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygankov AA, Seibert M (2003) The dependence of algal H2 production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta Bioenerg 1607(2–3):153–160

    Article  Google Scholar 

  143. Zabawinski C, Van den Koornhuyse N, Hulst CD, Schlichting R, Giersch C, Delrue B, Lacroix J, Preiss J, Ball S (2001) Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J Bacteriol 183(3):1069–1077

    Article  Google Scholar 

  144. Krishnan A, Kumaraswamy GK, Vinyard DJ, Gu H, Ananyev G, Posewitz MC, Dismukes GC (2015) Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Plant J 81(6):947–960

    Article  Google Scholar 

  145. Scoma A, Bertin L, Pintucci C, Raddi S, Fava F (2012) Inhibition of photosystem 2 in starch-enriched Chlamydomonas reinhardtii cells prevents the efficient induction of H2 production in sulfur-depleted cultures. Int J Hydrog Energy 37(14):10604–10610

    Article  Google Scholar 

  146. Li Y, Xu H, Han F, Mu J, Chen D, Feng B, Zeng H (2015) Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy-photoinduction cultivation regime. Bioresour Technol 192:781–791

    Article  Google Scholar 

  147. Van Den Koornhuyse N, Delrue B, Decq A, Iglesias A, Carton A, Preiss J, Ball S, Libessart N, Zabawinski C (1996) Carbohydrates, lipids, and other natural products: control of starch composition and structure through substrate supply in the monocellular alga Chlamydomonas reinhardtii. 271(27):16281–16287

    Google Scholar 

  148. Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102(1):215–225

    Article  Google Scholar 

  149. Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML (2004) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16(8):2151–2163

    Article  Google Scholar 

  150. Beacham TA, Macia VM, Rooks P, White DA, Ali ST (2015) Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis. Biotechnol Rep 7:87–94

    Article  Google Scholar 

  151. Li L, Zhang L, Liu J (2015) The enhancement of hydrogen photoproduction in marine Chlorella pyrenoidosa under nitrogen deprivation. Int J Hydrog Energy 40(43):14784–14789

    Article  Google Scholar 

  152. Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235(4):729–745

    Article  Google Scholar 

  153. Busi MV, Barchiesi J, Martín M, Gomez-Casati DF (2014) Starch metabolism in green algae. Starch/Staerke 66(1–2):28–40

    Article  Google Scholar 

  154. Shin H, Hong S-J, Kim H, Yoo C, Lee H, Choi H-K, Lee C-G, Cho B-K (2015) Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresour Technol 194:57–66

    Article  Google Scholar 

  155. Hamilton BS, Nakamura K, Roncari DA (1992) Accumulation of starch in Chlamydomonas reinhardtii flagellar mutants. Biochem Cell Biol 70(3–4):255–258

    Article  Google Scholar 

  156. Volgusheva A, Styring S, Mamedov F (2013) Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii. Proc Natl Acad Sci 110(18):7223–7228

    Article  Google Scholar 

  157. Pinto TS, Malcata FX, Arrabaça JD, Silva JM, Spreitzer RJ, Esquível MG (2013) Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. Appl Microbiol Biotechnol 97(12):5635–5643

    Article  Google Scholar 

  158. Johanningmeier U, Heiss S (1993) Construction of a Chlamydomonas reinhardtii mutant with an intronless psbA gene. Plant Mol Biol 22(1):91–99

    Article  Google Scholar 

  159. Giardi MT, Rea G, Lambreva MD, Antonacci A, Pastorelli S, Bertalan I, Johanningmeier U, Mattoo AK (2013) Mutations of photosystem II D1 protein that empower efficient phenotypes of Chlamydomonas reinhardtii under extreme environment in space. PLoS One 8(5):18–20

    Article  Google Scholar 

  160. Mulo P, Sakurai I, Aro E-M (2012) Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair. Biochim Biophys Acta Bioenerg 1817(1):247–257

    Article  Google Scholar 

  161. Preiss S, Schrader S, Johanningmeier U (2001) Rapid, ATP-dependent degradation of a truncated D1 protein in the chloroplast. Eur J Biochem 268(16):4562–4569

    Article  Google Scholar 

  162. Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157(4):613–619

    Article  Google Scholar 

  163. Faraloni C, Torzillo G (2010) Phenotypic characterization and hydrogen production in Chlamydomonas reinhardtii Qb-binding D1-protein mutants under sulfur starvation: changes in chl fluorescence and pigment composition. J Phycol 46(4):788–799

    Article  Google Scholar 

  164. Oncel SS, Kose A, Faraloni C, Imamoglu E, Elibol M, Torzillo G, Sukan FV (2014) Biohydrogen production using mutant strains of Chlamydomonas reinhardtii: the effects of light intensity and illumination patterns. Biochem Eng J 92:47–52

    Article  Google Scholar 

  165. Ghysels B, Franck F (2010) Hydrogen photo-evolution upon S deprivation stepwise: an illustration of microalgal photosynthetic and metabolic flexibility and a step stone for future biotechnological methods of renewable H(2) production. Photosynth Res 106(1–2):145–154

    Article  Google Scholar 

  166. Chen HC, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res 84(1–3):289–296

    Article  Google Scholar 

  167. Reijnders MJMF, van Heck RGA, Lam CMC, Scaife MA, dos Santos VAPM, Smith AG, Schaap PJ (2014) Green genes: bioinformatics and systems-biology innovations drive algal biotechnology. Trends Biotechnol 32(12):617–626

    Article  Google Scholar 

  168. Ball SG (2005) Eukaryotic microalgae genomics. The essence of being a plant. Plant Physiol 137:397–398

    Article  Google Scholar 

  169. Henriquez V, Gimpel J, Escobar C, Gutierrez C, Cadoret JP, Marshall S (2009) Identification of microalgal chloroplast sequences: genetic tools to develop microalgal heterologous expression systems for aquaculture applications. New Biotechnol 25:S40

    Article  Google Scholar 

  170. Stauber EJ, Hippler M (2004) Chlamydomonas reinhardtii proteomics. Plant Physiol Biochem PPB/Société Fr Physiol végétale 42(12):989–1001

    Article  Google Scholar 

  171. Liu D, Hu R, Palla KJ, Tuskan GA, Yang X (2016) Advances and perspectives on the use of CRISPR/Cas9 systems in plant genomics research. Curr Opin Plant Biol 30:70–77

    Article  Google Scholar 

  172. Weckwerth W (2011) Green systems biology – from single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteome 75(1):284–305

    Article  Google Scholar 

  173. Lopez D, Casero D, Cokus SJ, Merchant SS, Pellegrini M (2011) Algal functional annotation tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinformatics 12(1):282

    Article  Google Scholar 

  174. Zhang L, He M, Liu J, Li L (2015) Role of the mitochondrial alternative oxidase pathway in hydrogen photoproduction in Chlorella protothecoides. Planta 241(4):1005–1014

    Article  Google Scholar 

  175. Zhang Z, Pendse ND, Phillips KN, Cotner JB, Khodursky A (2008) Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genomics 9:344

    Article  Google Scholar 

  176. Jamers A, Blust R, De Coen W (2009) Omics in algae: paving the way for a systems biological understanding of algal stress phenomena? Aquat Toxicol 92(3):114–121

    Article  Google Scholar 

  177. Walker TL, Collet C, Purton S (2005) Algal transgenics in the genomic era. J Phycol 41(6):1077–1093

    Article  Google Scholar 

  178. Qin S, Lin H, Jiang P (2012) Advances in genetic engineering of marine algae. Biotechnol Adv 30(6):1602–1613

    Article  Google Scholar 

  179. Meuser JE, Ananyev G, Wittig LE, Kosourov S, Ghirardi ML, Seibert M, Dismukes GC, Posewitz MC (2009) Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. J Biotechnol 142(1):21–30

    Article  Google Scholar 

  180. Kondo A, Ishii J, Hara KY, Hasunuma T, Matsuda F (2013) Development of microbial cell factories for bio-refinery through synthetic bioengineering. J Biotechnol 163(2):204–216

    Article  Google Scholar 

  181. Lv H, Qu G, Qi X, Lu L, Tian C, Ma Y (2013) Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation. Genomics 101(4):229–237

    Article  Google Scholar 

  182. Chen W, Zhou P, Zhang M, Zhu Y, Wang X, Luo X, Bao Z, Yu L (2016) Transcriptome analysis reveals that up-regulation of the fatty acid synthase gene promotes the accumulation of docosahexaenoic acid in Schizochytrium sp. S056 when glycerol is used. Algal Res 15:83–92

    Article  Google Scholar 

  183. Schmollinger S, Mühlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schroda M, Merchant SS (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26(4):1410–1435

    Article  Google Scholar 

  184. Bochenek M, Etherington GJ, Koprivova A, Mugford ST, Bell TG, Malin G, Kopriva S (2013) Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi. New Phytol

    Google Scholar 

  185. Yang S, Guarnieri MT, Smolinski S, Ghirardi M, Pienkos PT (2013) De novo transcriptomic analysis of hydrogen production in the green alga Chlamydomonas moewusii through RNA-Seq. Biotechnol Biofuels 6(1):118

    Article  Google Scholar 

  186. Nguyen AV, Thomas-Hall SR, Malnoë A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM (2008) Transcriptome for photobiological hydrogen production induced by sulfur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7(11):1965–1979

    Article  Google Scholar 

  187. Burja AM, Banaigs B, Abou-Mansour E, Grant Burgess J, Wright PC (2001) Marine cyanobacteria – a prolific source of natural products. Tetrahedron 57(46):9347–9377

    Article  Google Scholar 

  188. Batth TS, Singh P, Ramakrishnan VR, Sousa MML, Chan LJG, Tran HM, Luning EG, Pan EHY, Vuu KM, Keasling JD, Adams PD, Petzold CJ (2014) A targeted proteomics toolkit for high-throughput absolute quantification of Escherichia coli proteins. Metab Eng 26:48–56

    Article  Google Scholar 

  189. Choi Y-E, Hwang H, Kim H-S, Ahn J-W, Jeong W-J, Yang J-W (2013) Comparative proteomics using lipid over-producing or less-producing mutants unravels lipid metabolisms in Chlamydomonas reinhardtii. Bioresour Technol 145:108–115

    Article  Google Scholar 

  190. Rolland N, Atteia A, Decottignies P, Garin J, Hippler M, Kreimer G, Lemaire SD, Mittag M, Wagner V (2009) Chlamydomonas proteomics. Curr Opin Microbiol 12(3):285–291

    Article  Google Scholar 

  191. Pereira M, Bartolomé CM, Sánchez-Fortún S (2014) Photosynthetic activity and protein overexpression found in Cr(III)-tolerant cells of the green algae Dictyosphaerium chlorelloides. Chemosphere 108:274–280

    Article  Google Scholar 

  192. Chen M, Zhao L, Sun Y, Cui S, Yang B, Wang J, Huang F (2010) Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J Proteome Res 9:3854–3866

    Article  Google Scholar 

  193. Garnier M, Carrier G, Rogniaux H, Nicolau E, Bougaran G, Saint-Jean B, Cadoret JP (2014) Comparative proteomics reveals proteins impacted by nitrogen deprivation in wild-type and high lipid-accumulating mutant strains of Tisochrysis lutea. J Proteome 105:107–120

    Article  Google Scholar 

  194. Zendong SZ, Herrenknecht C, Mondeguer F, Hess P (2013) Metabolomic approach for the analysis of micro-algae : direct analysis versus passive sampling. 4th International Symposium On Marine & Freshwater Toxin Analysis and AOAC Task Force Meeting, 5–9 May 2013, Baiona, Spain

    Google Scholar 

  195. Zeng J, Zhang M, Sun X (2013) Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. PLoS One 8(8):1–10

    Google Scholar 

  196. Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284(35):23415–23425

    Article  Google Scholar 

  197. Yang D, Zhang Y, Barupal DK, Fan X, Gustafson R, Guo R, Fiehn O (2014) Metabolomics of photobiological hydrogen production induced by CCCP in Chlamydomonas reinhardtii. Int J Hydrog Energy 39(1):150–158

    Article  Google Scholar 

  198. Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP, (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii Eukaryotic cell 13:11 p. 1465–1469

    Google Scholar 

  199. Wei Y, Niu J, Huan L, Huang A, He L, Wang G (2015) Cell penetrating peptide can transport dsRNA into microalgae with thin cell walls. Algal Res 8:135–139

    Article  Google Scholar 

  200. Abelson JN, Simon MI, Pyle AM, Colowick SP, Kaplan NO (2014) The use of CRISPR/cas9, ZFNs, TALENs in generating site specific genome alterations, vol 4

    Google Scholar 

  201. Gaj T (2014) ZFN, TALEN and CRISPR/Cas based methods for genome engineering. 2013 31(7):397–405

    Google Scholar 

  202. Schaeffer SM, Nakata PA (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240:130–142

    Article  Google Scholar 

  203. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV and van der Oost J (2017) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems Science 353 (6299) aad 5147

    Article  Google Scholar 

  204. Estrela R, Cate JHD (2016) Energybiotechnology in the CRISPR-Cas9 era. Curr Opin Biotechnol 38:79–84

    Article  Google Scholar 

  205. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  Google Scholar 

  206. Jiang W, Brueggeman AJ, Horken KM, Plucinak TM, Weeks DP (2014) Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot Cell 13(11):1465–1469

    Article  Google Scholar 

  207. Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73(5):873–882

    Article  Google Scholar 

  208. Gao H, Wright DA, Li T, Wang Y, Horken K, Weeks DP, Yang B, Spalding MH (2014) TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res 5:52–60

    Article  Google Scholar 

  209. Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951

    Article  Google Scholar 

  210. Weyman PD, Beeri K, Lefebvre SC, Rivera J, Mccarthy JK, Heuberger AL, Peers G, Allen AE, Dupont CL (2015) Inactivation of Phaeodactylum tricornutum urease gene using transcription activator-like effector nuclease-based targeted mutagenesis. Plant Biotechnol J 13(4):460–470

    Article  Google Scholar 

  211. Wu S, Xu L, Wang R, Liu X, Wang Q (2011) A high yield mutant of Chlamydomonas reinhardtii for photoproduction of hydrogen. Int J Hydrog Energy 36(21):14134–14140

    Article  Google Scholar 

  212. Wendt KE, Ungerer J, Cobb RE, Zhao H, Pakrasi HB, Abed R, Dobretsov S, Sudesh K, Lem N, Glick B, Sakai M, Ogawa T, Matsuoka M, Fukuda H, McNeely K, Xu Y, Bennette N, Bryant D, Dismukes G, Liu X, Sheng J, Curtiss R, Deng M-D, Coleman J, Lindberg P, Park S, Melis A, Du W, Liang F, Duan Y, Tan X, Lu X, Yao L, Qi F, Tan X, Lu X, Yu J, Liberton M, Cliften P, Head R, Jacobs J, Smith R, Golden S, Brusslan J, Haselkorn R, Griese M, Lange C, Soppa J, Matsuoka M, Takahama K, Ogawa T, Cong L, Ran F, Cox D, Lin S, Barretto R, Habib N, Xu T, Li Y, Shi Z, Hemme C, Li Y, Zhu Y, Jiang W, Bikard D, Cox D, Zhang F, Marraffini L, Horvath P, Barrangou R, Wiedenheft B, Sternberg S, Doudna J, Bhaya D, Davison M, Barrangou R, Deltcheva E, Chylinski K, Sharma C, Gonzales K, Chao Y, Pirzada Z, Sander J, Joung J, Kuzminov A, Cai F, Axen S, Kerfeld C, Scholz I, Lange S, Hein S, Hess W, Backofen R, Heidelberg J, Nelson W, Schoenfeld T, Bhaya D, Yao L, Cengic I, Anfelt J, Hudson E, Cobb R, Wang Y, Zhao H, Mulkidjanian A, Koonin E, Makarova K, Mekhedov S, Sorokin A, Wolf Y, Adir N, Collier J, Grossman A, Marraccini P, Bulteau S, Cassier-Chauvat C, Mermet-Bouvier P, Chauvat F, Zinchenko V, Piven I, Melnik V, Shestakov S, Muth G, Nubaumer B, Wohlleben W, Pühler A, Wolk C, Vonshak A, Kehoe P, Elhai J (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact 15(1):115

    Article  Google Scholar 

  213. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim J-S, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620

    Article  Google Scholar 

  214. Biofuels A, Mcgraw L (2009) The ethics of adoption and development of case study 1 of the adoption and development of energy technologies. State of the Art Review

    Google Scholar 

  215. Polle JEW, Kanakagiri S-D, Melis A (2003) tla1, a DNA insertional transformant of the green alga Chlamydomonas reinhardtii with a truncated light-harvesting chlorophyll antenna size. Planta 217(1):49–59

    Google Scholar 

  216. Tetali SD, Mitra M, Melis A (2007) Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta 225(4):813–829

    Article  Google Scholar 

  217. Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: Impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5(6):802–814

    Article  Google Scholar 

  218. Reifschneider-Wegner K, Kanygin A, Redding KE (2014) Expression of the [FeFe] hydrogenase in the chloroplast of Chlamydomonas reinhardtii. Int J Hydrog. Energy 39(8):3657–3665

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suphi Ş. Öncel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Öncel, S.Ş., Köse, A. (2019). Biohydrogen Production. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_951

Download citation

Publish with us

Policies and ethics